Patents Assigned to Daiken Chemical Co., Ltd.
  • Patent number: 6905994
    Abstract: A first inventive microwave dielectric composition comprises a ceramic composition represented by AnR4Ti3+nO12+3n, where a is an alkaline earth metal element, R is a rare earth element and characterized in that a case satisfying A=Ba and a case of R=La is excluded and the compositional ratio n=1,2 or 4. A second inventive microwave dielectric composition comprises a ceramic composition represented by AXR4Ti3+XO12+3X, where A is an alkaline earth metal element, R is a rare earth element and characterized in that the compositional ratio X is within a range of 0.5<X<5 (excluding X=1,2, 4). A variety of small microwave dielectric resonators having excellent transmitting/receiving characters can be mass produced inexpensively from that composition.
    Type: Grant
    Filed: February 20, 2002
    Date of Patent: June 14, 2005
    Assignees: Daiken Chemical Co., Ltd.
    Inventors: Hitoshi Ohsato, Akio Harada, Takashi Okawa, Hiroki Okabe
  • Patent number: 6892432
    Abstract: A method for manufacturing a nanotube cartridge including the steps of: adhering numerous nanotubes to a surface of a holder, disposing a knife edge at an inclination to the surface of the holder so that the knife edge is raised with its tip end being in contact with the surface of the holder, and collecting the nanotubes to near the tip end of the knife edge by moving the knife edge in a direction opposite from the tip end with the tip end being kept in contact with the surface, thus allowing the nanotubes to be arranged on the tip end of the knife edge with the nanotubes protruding from the tip end. When adhering the nanotubes to the holder surface, nanotubes are merely put in a vessel, the holder is placed in the vessel, and then the vessel is vibrated.
    Type: Grant
    Filed: December 7, 2001
    Date of Patent: May 17, 2005
    Assignees: Daiken Chemical Co., Ltd.
    Inventors: Yoshikazu Nakayama, Seiji Akita, Takayoshi Kishida, Akio Harada
  • Patent number: 6805390
    Abstract: To provide nanotweezers and a nanomanipulator which allow great miniaturization of the component and are capable of gripping various types of nano-substances such as insulators, semiconductors and conductors and of gripping nano-substances of various shapes. Electrostatic nanotweezers 2 are characterized in that the nanotweezers 2 are comprised of a plurality of nanotubes whose base end portions are fastened to a holder 6 so that the nanotubes protrude from the holder 6, coating films which insulate and cover the surfaces of the nanotubes, and lead wires 10, 10 which are connected to two of the nanotubes 8, 9; and the tip ends of the two nanotubes are freely opened and closed by means of an electrostatic attractive force generated by applying a voltage across these lead wires.
    Type: Grant
    Filed: April 4, 2003
    Date of Patent: October 19, 2004
    Assignees: Yoshikazu Nakayama, Daiken Chemical Co., Ltd.
    Inventors: Yoshikazu Nakayama, Seiji Akita, Akio Harada, Takashi Okawa
  • Patent number: 6802549
    Abstract: To provide nanotweezers and a nanomanipulator which allow great miniaturization of the component and are capable of gripping various types of nano-substances such as insulators, semiconductors and conductors and of gripping nano-substances of various shapes. Electrostatic nanotweezers 2 are characterized in that the nanotweezers 2 are comprised of a plurality of nanotubes whose base end portions are fastened to a holder 6 so that the nanotubes protrude from the holder 6, coating films which insulate and cover the surfaces of the nanotubes, and lead wires 10, 10 which are connected to two of the nanotubes 8, 9; and the tip ends of the two nanotubes are freely opened and closed by means of an electrostatic attractive force generated by applying a voltage across these lead wires.
    Type: Grant
    Filed: April 4, 2003
    Date of Patent: October 12, 2004
    Assignees: Daiken Chemical Co., Ltd.
    Inventors: Yoshikazu Nakayama, Seiji Akita, Akio Harada, Takashi Okawa
  • Patent number: 6800865
    Abstract: The coated nanotube surface signal probe constructed from a nanotube, a holder which holds the nanotube, a coating film fastening a base end portion of the nanotube to a surface of the holder by way of adhering the base end portion on the surface of holder in a range of a base end portion length with an electric contact state and covering a specified region including the base end portion with the coating film maintaining the electric contact state between the nanotube and the holder, a tip end portion of the nanotube being caused to protrude from the holder; and the tip end portion is used as a probe needle so as to scan surface signals. The coated nanotube surface signal probe can be used as a probe in AFM (Atomic Force Microscope), STM (Scanning Tunneling Microscope) other SPM (Scanning Probe Microscope).
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: October 5, 2004
    Assignees: Daiken Chemical Co., Ltd., Yoshikazu Nakayama
    Inventors: Yoshikazu Nakayama, Akio Harada, Seiji Akita
  • Patent number: 6787769
    Abstract: A conductive probe for a scanning type microscope that captures the substance information of the surface of a specimen by the tip end of a conductive nanotube probe needle fastened to a cantilever, in which the conductive probe is constructed from a conductive film formed on the surface of the cantilever, a conductive nonatube with its base end portion being fixed in contact which the surface of a predetermined of the cantilever, and a conductive deposit which fastens the conductive nanotube by covering from the base end portion of the nonatube to a part of the conductive film. The conductive nonatube and the conductive film are electrically connected to each other by the conductive deposit.
    Type: Grant
    Filed: July 26, 2002
    Date of Patent: September 7, 2004
    Assignees: Daiken Chemical Co., Ltd., Seiko Instruments Inc.
    Inventors: Yoshikazu Nakayama, Seiji Akita, Akio Harada, Takashi Okawa, Yuichi Takano, Masatoshi Yasutake, Yoshiharu Shirakawabe
  • Publication number: 20040168527
    Abstract: The present invention realizes a probe with a high resolution, high rigidity and high bending elasticity which can be used in a scanning probe microscope and makes it possible to pick up images of surface atoms with a high resolution. Also, a high-precision input-output probe which can be used in high-density magnetic information processing devices is also realized.
    Type: Application
    Filed: March 4, 2004
    Publication date: September 2, 2004
    Applicants: Daiken Chemical Co., Ltd., Yoshikazu Nakayama
    Inventors: Yoshikazu Nakayama, Akio Harada, Seiji Akita
  • Patent number: 6777693
    Abstract: A lithographic method using an ultra-fine probe needle in which a base end of a nanotube is fastened to a holder with the tip end of the nanotube protruded from the holder. The tip end of the thus obtained nanotube probe needle is brought to contact a sample surface, a voltage is applied across the probe needle and sample, and the probe needle is moved while the sample substance in the area of contact of the probe needle is removed by the application of the voltage, thus forming a groove-form pattern on the sample surface.
    Type: Grant
    Filed: July 26, 2001
    Date of Patent: August 17, 2004
    Assignees: Daiken Chemical Co., Ltd.
    Inventors: Yoshikazu Nakayama, Akio Harada
  • Patent number: 6777637
    Abstract: A method for sharpening a nanotube including the steps of: connecting the base end portion of a nanotube to an electrode with the tip end portion of the nanotube protruded from the electrode; connecting the tip end portion of the nanotube to another electrode; applying a voltage between the electrodes so as to cause an electric current to flow in the middle portion of the nanotube which is located between the two electrodes; evaporating constituent atoms of the nanotube layer by layer from a evaporation starting region, which is located in the middle region of the nanotube (and can be a crystal defect region, or a curved portion), by the heat generated by the electric current, thus reducing the diameter of the evaporation starting region; and cutting the evaporation starting region that has the reduced diameter, thus forming a sharpened end on the nanotube.
    Type: Grant
    Filed: March 18, 2003
    Date of Patent: August 17, 2004
    Assignees: Daiken Chemical Co., Ltd.
    Inventors: Yoshikazu Nakayama, Seiji Akita, Akio Harada
  • Patent number: 6759653
    Abstract: A scanning type microscope that captures substance information of the surface of a specimen by the tip end of a nanotube probe needle fastened to a cantilever, in which an organic gas is decomposed by a focused ion beam in a focused ion beam apparatus, and the nanotube is bonded to the cantilever with a deposit of the decomposed component thus produced. With this probe, the quality of the nanotube probe needle can be improved by removing an unnecessary deposit adhering to the nanotube tip end portion using a ion beam, by cutting an unnecessary part of the nanotube in order to control length of the probe needle and by injecting ions into the tip end portion of the nanotube.
    Type: Grant
    Filed: July 26, 2002
    Date of Patent: July 6, 2004
    Assignees: Yoshikazu Nakayama, Daiken Chemical Co., Ltd., Seiko Instruments Inc.
    Inventors: Yoshikazu Nakayama, Seiji Akita, Akio Harada, Takashi Okawa, Yuichi Takano, Masatoshi Yasutake, Yoshiharu Shirakawabe
  • Patent number: 6735046
    Abstract: A nano-magnetic head for inputting and outputting magnetic signals with nano-region precision on a magnetic recording medium such as magnetic tapes, magnetic cards, magnetic disks, magnetic drums, etc. The nano-magnetic head uses a nanotube with its base end portion fastened to a holder that is at an end of an AFM cantilever. The tip end portion of the nanotube protrudes from the holder, and a nanocoil is wound around the outer circumference of the tip end portion of the nanotube so that signals are inputted and outputted at both ends of the nanocoil. By way of lining up ferromagnetic metal atoms in the hollow portion of the nanotube, it is possible to strengthen the magnetic signal. The nano-magnetic head is combinable with a signal controller, thus forming a nano-magnetic head device.
    Type: Grant
    Filed: November 21, 2001
    Date of Patent: May 11, 2004
    Assignees: Daiken Chemical Co., Ltd.
    Inventors: Yoshikazu Nakayama, Akio Harada
  • Publication number: 20040079673
    Abstract: An electroconductive container that stores a nanotube product, including a container body and a cover that opens and closes the container body in which both container body and cover are made of an electroconductive material. An electroconductive fixing member can by provided in the bottom of the container for holding a nanotube product in an immovable fashion.
    Type: Application
    Filed: March 20, 2003
    Publication date: April 29, 2004
    Applicant: Yoshikazu Nakayama and Daiken Chemical Co., Ltd.
    Inventors: Yoshikazu Nakayama, Seiji Akita, Akio Harada
  • Patent number: 6719602
    Abstract: A nanotube length control method involving a nanotube and a discharge needle so that the nanotube with its base end portion fastened to a holder and its tip end portion caused to protrude is set so as for its tip end to face the tip end of the discharge needle. A voltage is applied across the nanotube and the discharge needle so that an electrical discharge is caused to occur between the tip end of the nanotube and the tip end of the discharge needle, thus cutting down the tip end of the nanotube by this discharge, and it is possible to control the length of the tip end portion of the nanotube.
    Type: Grant
    Filed: May 24, 2002
    Date of Patent: April 13, 2004
    Assignees: Daiken Chemical Co., Ltd.
    Inventors: Yoshikazu Nakayama, Seiji Akita, Akio Harada
  • Patent number: 6705154
    Abstract: A cantilever for a vertical scanning type microscope that obtains substance information of a surface of a specimen by a tip end of a nanotube probe needle fastened to the cantilever, in which the cantilever has a fixing region to which a base end portion of a nanotube serving as a probe needle is fastened, and a height direction of the fixing region is set to be substantially perpendicular to a mean surface of the specimen when the cantilever is disposed in a measuring state with respect to the mean surface of the specimen; and the base end portion of the nanotube is bonded in the height direction of the fixing region.
    Type: Grant
    Filed: July 26, 2002
    Date of Patent: March 16, 2004
    Assignees: Daiken Chemical Co., Ltd., Seiko Instruments, Inc.
    Inventors: Yoshikazu Nakayama, Seiji Akita, Akio Harada, Takashi Okawa, Yuichi Takano, Masatoshi Yasutake, Yoshiharu Shirakawabe
  • Patent number: 6703615
    Abstract: A light receiving and emitting probe including a conductive nanotube probe needle with its base end fastened to a holder and its tip end protruded, a light receiving and emitting body formed on this probe needle, a lead wire fastened to the light receiving and emitting body, and a power supply that applies an electric voltage between both ends of the lead wire and the probe needle. Light is emitted and received by the light receiving and emitting body when an electric current passes through the light receiving and emitting body. A light receiving and emitting probe apparatus includes the above-described light receiving and emitting probe, a scanning mechanism that allows the light receiving and emitting probe to scan over a sample, and a control circuit that causes the light receiving and emitting body of the light receiving and emitting probe to receive and emit a light.
    Type: Grant
    Filed: February 13, 2002
    Date of Patent: March 9, 2004
    Assignees: Daiken Chemical Co., Ltd.
    Inventors: Yoshikazu Nakayama, Akio Harada
  • Publication number: 20040004364
    Abstract: Diode-type nanotweezers including a first arm and a second arm that project from a holder and are opened and closed by an electrostatic force so as to hold a nanosubstance. The first arm is formed by a gate nanotube fastened at its base end to the holder, and its tip end protrudes from the holder. The second arm is formed by a nanotube diode fastened at its two base ends to the holder and have a diode characteristic portion at its tip end. Diode current and diode voltage applied between the base ends of the arms shows a non-linear diode characteristic such as varistor and rectification. When a gate voltage is applied between the gate nanotube and the nanotube diode, the arms are controlled and a grip strength for a nanosubstance held by the arms is detected by changes in the gate voltage or the diode current.
    Type: Application
    Filed: January 31, 2003
    Publication date: January 8, 2004
    Applicants: Daiken Chemical Co., Ltd.
    Inventors: Yoshikazu Nakayama, Akio Harada
  • Patent number: 6669256
    Abstract: To provide nanotweezers and a nanomanipulator which allow great miniaturization of the component and are capable of gripping various types of nano-substances such as insulators, semiconductors and conductors and of gripping nano-substances of various shapes. Electrostatic nanotweezers 2 are characterized in that the nanotweezers 2 are comprised of a plurality of nanotubes whose base end portions are fastened to a holder 6 so that the nanotubes protrude from the holder 6, coating films which insulate and cover the surfaces of the nanotubes, and lead wires 10, 10 which are connected to two of the nanotubes 8, 9; and the tip ends of the two nanotubes are freely opened and closed by means of an electrostatic attractive force generated by applying a voltage across these lead wires.
    Type: Grant
    Filed: November 7, 2001
    Date of Patent: December 30, 2003
    Assignees: Daiken Chemical Co., Ltd.
    Inventors: Yoshikazu Nakayama, Seiji Akita, Akio Harada, Takashi Okawa
  • Patent number: 6668652
    Abstract: A method for measuring the mass of nano-substances including the steps of gripping a nano-substance with a nanotweezer gripping portion made of a plurality of nanotubes, resonating the nanotweezer gripping portion in this gripping state, measuring a resulting first characteristic frequency, and obtaining the mass of the gripped nano-substance by comparing the first and second characteristic frequencies, where the second characteristic frequency is the characteristic frequency of the nanotweezer gripping portion with no nano-substance gripped thereby. The gripping portion is caused to resonate electrically by applying an AC voltage between the nanotweezer gripping portion and an electrode disposed near the nanotweezer gripping portion. The gripping portion is caused also to resonate mechanically by way of expanding and contracting a piezo-electric element disposed on a main body that supports the nanotweezer gripping portion.
    Type: Grant
    Filed: May 24, 2002
    Date of Patent: December 30, 2003
    Assignees: Daiken Chemical Co., Ltd.
    Inventors: Yoshikazu Nakayama, Akio Harada
  • Patent number: 6636050
    Abstract: A four-terminal measuring device, which uses nanotube terminals and measures low resistance values and low impedance values of extremely small objects under test with good precision, including two current terminals which cause a constant current to flow from a constant-current power supply to an object under test and two voltage terminals which measure the voltage across both ends of the object under test; and in this four-terminal measuring device, a nanotube terminal is formed by fastening the base end portion of a nanotube to a holder so that the tip end portion of the nanotube protrudes from the holder, and such a nanotube terminal is connected to desired terminals among the four terminals.
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: October 21, 2003
    Assignees: Daiken Chemical Co., Ltd.
    Inventors: Yoshikazu Nakayama, Akio Harada, Takashi Okawa, Toshikazu Nosaka
  • Publication number: 20030189350
    Abstract: To provide nanotweezers and a nanomanipulator which allow great miniaturization of the component and are capable of gripping various types of nano-substances such as insulators, semiconductors and conductors and of gripping nano-substances of various shapes.
    Type: Application
    Filed: April 4, 2003
    Publication date: October 9, 2003
    Applicants: Yoshikazu Nakayama, Daiken Chemical Co., Ltd.
    Inventors: Yoshikazu Nakayama, Seiji Akita, Akio Harada, Takashi Okawa