Patents Assigned to Dalian Institute of Chemical Physics
  • Publication number: 20240116844
    Abstract: A method for preparing glycolic acid through hydrolysis of alkoxyacetate is provided. The method includes: subjecting raw materials including the alkoxyacetate and water to a reaction in the presence of an acidic molecular sieve catalyst to produce the glycolic acid, where the alkoxyacetate is at least one selected from the group consisting of compounds with a structural formula shown in formula I; and in formula I, R1 and R2 each are independently any one selected from the group consisting of C1-C5 alkyl groups. The glycolic acid production method in the present application can be implemented by a traditional fixed-bed reactor under an atmospheric pressure, which is very suitable for continuous production.
    Type: Application
    Filed: February 3, 2021
    Publication date: April 11, 2024
    Applicant: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Youming NI, Wenliang ZHU, Zhongmin LIU
  • Publication number: 20240109833
    Abstract: A method for preparing glycolic acid and methyl glycolate through hydrolysis of methyl methoxyacetate and methoxyacetic acid is provided. The method includes allowing raw materials including methyl methoxyacetate, methoxyacetic acid, and water to contact and react with a catalyst to produce glycolic acid and methyl glycolate, where the catalyst is at least one selected from the group consisting of a solid acid catalyst, a liquid acid catalyst, a solid base catalyst, and a liquid base catalyst. The method for preparing glycolic acid and methyl glycolate in the present application can be implemented by a traditional fixed-bed reactor, tank reactor, or catalytic distillation reactor under an atmospheric pressure, which is very suitable for continuous production.
    Type: Application
    Filed: February 3, 2021
    Publication date: April 4, 2024
    Applicant: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Youming NI, Wenliang ZHU, Zhongmin LIU
  • Patent number: 11872549
    Abstract: A fluidized bed reactor includes a main shell and a coke control zone shell; the main shell includes an upper shell and a lower shell; the upper shell encloses a gas-solid separation zone, and the lower shell encloses a reaction zone; the reaction zone axially communicates with the gas-solid separation zone; the coke control zone shell is circumferentially arranged on an outer wall of the main shell; the coke control zone shell and the main shell enclose an annular cavity, and the annular cavity is a coke control zone; n baffles are radially arranged in the coke control zone, and the n baffles divide the coke control zone into n coke control zone subzones, where n is an integer; the coke control zone subzones are provided with a coke control raw material inlet; and a catalyst circulation hole is formed in each of n?1 of the baffles.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: January 16, 2024
    Assignee: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Mao Ye, Tao Zhang, Jinling Zhang, Shuliang Xu, Hailong Tang, Xiangao Wang, Cheng Zhang, Jinming Jia, Jing Wang, Hua Li, Chenggong Li, Zhongmin Liu
  • Publication number: 20230402622
    Abstract: An integrated electrode frame and preparation method and use thereof is provided. The integrated electrode frame includes a positive electrode frame, a negative electrode frame, and a membrane. Each of the positive electrode frame and the negative electrode frame is a flat plate with a central through-hole. The membrane is placed between the positive electrode frame and the negative electrode frame, and the membrane is located at the through-hole and hermetically connected to a peripheral edge of the through-hole. A peripheral edge of the positive electrode frame is hermetically connected to a peripheral edge of the negative electrode frame. A material composition of a connecting part of the positive electrode frame and the negative electrode frame contains at least one material which is the same as that of the positive electrode frame or the negative electrode frame. The structures and materials of the electrode frames and the membrane are optimized.
    Type: Application
    Filed: July 10, 2020
    Publication date: December 14, 2023
    Applicant: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Xianfeng LI, Dingqin SHI, Huamin ZHANG
  • Patent number: 11833502
    Abstract: A coke control reactor, and a device and method for preparing low-carbon olefins from an oxygen-containing compound are provided. The coke control reactor includes a coke control reactor shell, a reaction zone I, and a coke controlled catalyst settling zone; a cross-sectional area at any position of the reaction zone I is less than that of the coke controlled catalyst settling zone; n baffles are arranged in a vertical direction in the reaction zone I; the n baffles divide the reaction zone I into m reaction zone I subzones; and a catalyst circulation hole is formed in each of the baffles, such that a catalyst flows in the reaction zone I in a preset manner. A catalyst charge in the present coke control reactor can be automatically adjusted, and an average residence time of a catalyst in the coke control reactor can be controlled by changing process operating conditions.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: December 5, 2023
    Assignee: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Tao Zhang, Mao Ye, Jinling Zhang, Shuliang Xu, Hailong Tang, Xiangao Wang, Cheng Zhang, Jinming Jia, Jing Wang, Hua Li, Chenggong Li, Zhongmin Liu
  • Publication number: 20230356148
    Abstract: A system for regeneration of acidic gas solvent, the system comprising; a regeneration cell having a solvent chamber arranged to receive a solvent flow, and an internal chamber arranged to receive a steam flow; said regeneration cell including a gas permeable membrane separating the solvent chamber and internal chamber; wherein the regeneration cell is arranged to vent acidic gas stripped from the solvent by the steam.
    Type: Application
    Filed: January 27, 2023
    Publication date: November 9, 2023
    Applicants: Petroliam Nasional Berhad (PETRONAS), Dalian Institute of Chemical Physics China Academy of Science
    Inventors: Norfaizah A. Manan, Guodong Kang, Zhe Phak Chan, Syafiqa M. Saleh, Yiming Cao
  • Publication number: 20230338935
    Abstract: A metal-organic framework (MOF) MIL-125 and a preparation method and a use thereof are provided. The MOF MIL-125 is a round cake-like crystal and has an external specific surface area (SSA) of 160 m2/g to 220 m2/g. The MOF MIL-125 provided in the present application has a large number of microporous structures, a large external SSA, and a high catalytic activity in oxidation.
    Type: Application
    Filed: September 11, 2020
    Publication date: October 26, 2023
    Applicant: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Jiacheng XING, Liping YANG, Danhua YUAN, Yunpeng XU, Zhongmin LIU
  • Publication number: 20230338923
    Abstract: An adsorbent and a use thereof are provided. The adsorbent is a metal-organic framework (MOF) MIL-125; the MOF MIL-125 has an external specific surface area (SSA) of 160 m2/g to 220 m2/g; and the MOF MIL-125 includes a micropore with an area of 1,000 m2/g to 1,500 m2/g. The external SSA of the MOF MIL-125 is much higher than an external SSA of the traditional MIL-125, which has promising application prospects in the adsorptive separation of xylene isomers and exhibits high selectivity for p-xylene.
    Type: Application
    Filed: September 11, 2020
    Publication date: October 26, 2023
    Applicant: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Liping YANG, Jiacheng XING, Danhua YUAN, Yunpeng XU, Zhongmin LIU
  • Publication number: 20230331578
    Abstract: A preparation method of a porous oxide is provided, which includes: preparing the porous oxide with a polyester polyol as a raw material. The porous oxide prepared by the preparation method in the present application has characteristics such as uniform and adjustable pore sizes and controllable distribution of mesopores, micropores, and macropores.
    Type: Application
    Filed: September 17, 2020
    Publication date: October 19, 2023
    Applicant: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Jiacheng XING, Danhua YUAN, Yunpeng XU, Zhongmin LIU
  • Patent number: 11784322
    Abstract: A metal seawater fuel cell includes a single cell or a battery pack which is composed of more than two single cells connected in series or in parallel or in series and parallel through circuits. The single cell has a metal anode arranged oppositely in a sealed single cell housing, a cathode carrying a hydrogen evolution catalyst, and a diaphragm arranged between the metal anode and the cathode, the bottom and the top of the single cell housing are respectively provided with fluid flow channels, and both ends of the fluid flow channels are respectively provided with openings communicated with the interior and exterior of the housing. The metal anode and/or single cell housing is placed in a closed transitional housing. The transitional housing is a degradable material or can be mechanically damaged by a driving device driven and started by a control device.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: October 10, 2023
    Assignee: Dalian Institute of Chemical Physics, Chinese Academy of Sciences
    Inventors: Erdong Wang, Min Liu, Zhao Yan, Gongquan Sun
  • Patent number: 11712675
    Abstract: The present application discloses a molecular sieve-based catalyst modification apparatus. The apparatus comprises a feed unit 1, a modification unit 2 and a cooling unit 3 connected in sequence; the feed unit comprises a catalyst feed unit 11 and a modifier feed unit 12, a catalyst and a modifier are introduced into the modification unit 2 respectively by the catalyst feed unit and the modifier feed unit and are discharged from the modification unit after sufficient reaction in modification unit, and then enter the cooling unit 3 for cooling. The present application further discloses a use method for the molecular sieve-based catalyst modification apparatus. The use method comprises: introducing a catalyst and a modifier into the modification unit 2 respectively through the feed unit 1; wherein the catalyst is modified by the modifier in the modification unit 2, and then discharged to the cooling unit 3 to cool until the temperature is lower than 50° C.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: August 1, 2023
    Assignee: Dalian Institute of Chemical Physics, Chinese Academy of Sciences
    Inventors: Tao Zhang, Mao Ye, Zhongmin Liu, Jinling Zhang, Hailong Tang, Jinming Jia, Xiangao Wang, Cheng Zhang, Hua Li, Yinfeng Zhao, Chenggong Li
  • Patent number: 11685866
    Abstract: Disclosed is a method for producing low carbon olefins and/or aromatics from feedstock comprising naphtha. The method can include the following steps: a) feeding feedstock comprising naphtha into a fast fluidized bed reactor; b) contacting the feedstock with a catalyst under conditions to produce a gas product and spent catalyst; c) separating the gas product to produce a stream comprising primarily one or more low carbon olefins and/or one or more aromatics; d) transporting the spent catalyst to a regenerator; e) regenerating the spent catalyst in the regenerator to form regenerated catalyst; and f) returning the regenerated catalyst to the fast fluidized bed reactor.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: June 27, 2023
    Assignees: SABIC GLOBAL TECHNOLOGIES B.V., DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Yinfeng Zhao, Mao Ye, Zhongmin Liu, Hailong Tang, Jing Wang, Jinling Zhang, Tao Zhang, Talal Khaled Al-Shammari
  • Publication number: 20230125888
    Abstract: A regeneration device, a device for preparing low-carbon olefins, and a use thereof are provided. The regeneration device includes a first regenerator and a second regenerator; a first activation zone of the first regenerator is connected to the second regenerator through a pipeline, such that a catalyst in the first activation zone is able to be delivered to the second regenerator; and the second regenerator is connected to a gas-solid separation zone of the first regenerator through a pipeline, such that a catalyst in the second regenerator is able to be delivered to the gas-solid separation zone. The regeneration device can adjust the coke content, coke content distribution, and coke species in a dimethyl ether/methanol to olefins (DMTO) catalyst to control an operation window of the DMTO catalyst, which improves the selectivity for low-carbon olefins and the atomic economy of a methanol-to-olefins (MTO) technology.
    Type: Application
    Filed: October 16, 2020
    Publication date: April 27, 2023
    Applicant: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Tao ZHANG, Mao YE, Jinling ZHANG, Shuliang XU, Hailong TANG, Xiangao WANG, Cheng ZHANG, Jinming JIA, Jing WANG, Hua LI, Chenggong LI, Zhongmin LIU
  • Publication number: 20230085715
    Abstract: A coke control reactor, a device for preparing low-carbon olefins from an oxygen-containing compound, and a use thereof are provided. The coke control reactor includes a riser reactor and a bed reactor; the bed reactor includes a bed reactor shell, and the bed reactor shell encloses a reaction zone I, a transition zone, and a gas-solid separation zone I from bottom to top; a bed reactor distributor is arranged in the reaction zone I; a coke controlled catalyst delivery pipe is arranged outside the reaction zone I; an upper section of the riser reactor penetrates through a bottom of the bed reactor and is axially inserted in the bed reactor; and an outlet end of the riser reactor is located in the transition zone. The coke control reactor can control the conversion and generation of coke species in a catalyst.
    Type: Application
    Filed: October 16, 2020
    Publication date: March 23, 2023
    Applicant: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Tao ZHANG, Mao YE, Jinling ZHANG, Shuliang XU, Hailong TANG, Xiangao WANG, Cheng ZHANG, Jinming JIA, Jing WANG, Hua LI, Chenggong LI, Zhongmin LIU
  • Patent number: 11605824
    Abstract: A zinc iodine flow battery includes a positive end plate, a positive current collector, a negative current collector, a positive electrode with a flow frame, a membrane, a negative electrode with a flow frame, a negative end plate. The negative electrolyte is circulated between the negative storage tank and the negative cavity by pump. The negative pipe is provided with a branch pipe for the positive electrolyte circulation. The porous membrane between the positive and negative electrodes can realize the conduction of supporting electrolyte and prevent the diffusion of I3? to the negative electrolyte. In a duel-flow battery system, same electrolyte serves as both the positive electrolyte and the negative electrolyte, which is a mixed aqueous solution containing iodized and zinc salt. The membrane is porous membrane does not contain ion exchange group. Both the positive and negative electrolyte are neutral solutions.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: March 14, 2023
    Assignee: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Xianfeng Li, Congxin Xie, Huamin Zhang
  • Publication number: 20230001393
    Abstract: A catalyst for pyrolysis of 1,2-dichloroethane (1,2-DCE) to prepare vinyl chloride monomer (VCM), a preparation method, a use, and a regeneration method thereof are provided. The catalyst for pyrolysis of 1,2-DCE to prepare VCM includes a silicon-aluminum molecular sieve. The catalyst for pyrolysis of 1,2-DCE to prepare VCM has high reaction activity and excellent selectivity and solves the problem that the pyrolysis of 1,2-DCE to prepare VCM in the prior art involves high reaction temperature and large energy consumption and is prone to coking and carbon deposition.
    Type: Application
    Filed: December 12, 2019
    Publication date: January 5, 2023
    Applicant: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Guangye LIU, Danhua YUAN, Yunpeng XU, Zhongmin LIU, Yanan LIU, Changmin BAI, Wei HUANG, Zhaoan CHEN, Shiying LI
  • Publication number: 20230001371
    Abstract: A fluidized bed reactor includes a main shell and a coke control zone shell; the main shell includes an upper shell and a lower shell; the upper shell encloses a gas-solid separation zone, and the lower shell encloses a reaction zone; the reaction zone axially communicates with the gas-solid separation zone; the coke control zone shell is circumferentially arranged on an outer wall of the main shell; the coke control zone shell and the main shell enclose an annular cavity, and the annular cavity is a coke control zone; n baffles are radially arranged in the coke control zone, and the n baffles divide the coke control zone into n coke control zone subzones, where n is an integer; the coke control zone subzones are provided with a coke control raw material inlet; and a catalyst circulation hole is formed in each of n-1 of the baffles.
    Type: Application
    Filed: October 16, 2020
    Publication date: January 5, 2023
    Applicant: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Mao YE, Tao ZHANG, Jinling ZHANG, Shuliang XU, Hailong TANG, Xiangao WANG, Cheng ZHANG, Jinming JIA, Jing WANG, Hua LI, Chenggong LI, Zhongmin LIU
  • Publication number: 20230002682
    Abstract: A fluidized bed reactor, a device, and a method for producing low-carbon olefins from oxygen-containing compound are provided. The fluidized bed reactor includes a reactor shell, a reaction zone, a coke control zone and a delivery pipe, where there are n baffles arranged in the coke control zone, and the n baffles divide the coke control zone into n sub-coke control zones which include a first sub-coke control zone, a second sub-coke control zone, and an nth sub-coke control zone; at least one catalyst circulation hole is provided on each of the n-1 baffles, so that the catalyst flows in an annular shape in the coke control zone, where n is an integer. The device and method can be adapted to a new generation of DMTO catalyst, and the unit consumption of production ranges from 2.50 to 2.58 tons of methanol/ton of low-carbon olefins.
    Type: Application
    Filed: October 16, 2020
    Publication date: January 5, 2023
    Applicant: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Mao YE, Tao ZHANG, Jinling ZHANG, Shuliang XU, Hailong TANG, Xiangao WANG, Cheng ZHANG, Jinming JIA, Jing WANG, Hua LI, Chenggong LI, Zhongmin LIU
  • Publication number: 20230001370
    Abstract: A coke control reactor, and a device and method for preparing low-carbon olefins from an oxygen-containing compound are provided. The coke control reactor includes a coke control reactor shell, a reaction zone I, and a coke controlled catalyst settling zone; a cross-sectional area at any position of the reaction zone I is less than that of the coke controlled catalyst settling zone; n baffles are arranged in a vertical direction in the reaction zone I; the n baffles divide the reaction zone I into m reaction zone I subzones; and a catalyst circulation hole is formed in each of the baffles, such that a catalyst flows in the reaction zone I in a preset manner. A catalyst charge in the present coke control reactor can be automatically adjusted, and an average residence time of a catalyst in the coke control reactor can be controlled by changing process operating conditions.
    Type: Application
    Filed: October 16, 2020
    Publication date: January 5, 2023
    Applicant: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Tao ZHANG, Mao YE, Jinling ZHANG, Shuliang XU, Hailong TANG, Xiangao WANG, Cheng ZHANG, Jinming JIA, Jing WANG, Hua LI, Chenggong LI, Zhongmin LIU
  • Publication number: 20220401905
    Abstract: A fluidized bed regenerator, a device for preparing low-carbon olefins, and a use thereof are provided. The fluidized bed regenerator includes a second activation zone, a first activation zone, and a gas-solid separation zone from bottom to top; the second activation zone axially communicates with the gas-solid separation zone; the first activation zone is arranged on a periphery of a junction between the second activation zone and the gas-solid separation zone; the first activation zone is an annular cavity; n baffles are radially arranged in the first activation zone, and the n baffles divide the first activation zone into n first activation zone subzones; and a catalyst circulation hole is formed in each of n?1 of the baffles such that a catalyst entering the first activation zone flows in an annular direction.
    Type: Application
    Filed: October 16, 2020
    Publication date: December 22, 2022
    Applicant: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Mao YE, Tao ZHANG, Jinling ZHANG, Shuliang XU, Hailong TANG, Xiangao WANG, Cheng ZHANG, Jinming JIA, Jing WANG, Hua LI, Chenggong LI, Zhongmin LIU