Patents Assigned to Delphi Technologies, Inc.
  • Patent number: 9928939
    Abstract: A wire cable assembly, such as those used in electric or hybrid electric vehicles, having a plurality of shielded wire cables that are spliced together is presented. The assembly includes a splicing device having a generally planar bus bar formed of a conductive material, wherein the exposed core conductors of the shielded wire cables are welded to the bus bar, thereby electrically interconnecting the exposed core conductors. A conductive sleeve encloses bus bar and interconnects the shield conductors of the shielded wire cables, providing shielding for the exposed core conductors and continuity for the shield conductors. An outer insulator enclosing the conductive sleeve. A method of splicing shielded wire cables using such a device is also presented herein.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: March 27, 2018
    Assignee: DELPHI TECHNOLOGIES, INC.
    Inventors: Thomas A. Volpone, Troy A. Iler
  • Patent number: 9928941
    Abstract: An electrical cable includes a first wire conductor separated from a second wire conductor and a compensation area proximate to, but separated from, an end portion of the cable and a method of manufacturing such an electrical cable. The first and second wire conductors are each connected to a contact element. The first and second wire conductors are separated by a first distance within the compensation area. The first and second wire conductors are separated by a second distance outside of the compensation area. The first distance is less than the second distance, thereby decreasing an impedance of the cable within the compensation area.
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: March 27, 2018
    Assignee: DELPHI TECHNOLOGIES, INC.
    Inventors: Reinhard Felgenhauer, Michael Rucks
  • Patent number: 9927810
    Abstract: A safe-stop-zone mapping system suitable for use on an automated-vehicle includes a digital-map and a controller. The digital-map indicates a travel-path suitable for travel by a host-vehicle. The digital-map also indicates a safe-stop-zone proximate to the travel-path. The controller is in communication with the digital-map. The controller is configured to navigate the host-vehicle into the safe-stop-zone when an emergency-situation occurs.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: March 27, 2018
    Assignee: DELPHI TECHNOLOGIES, INC.
    Inventors: Michael H. Laur, Ronald J. Szabo, Brian R. Hilnbrand
  • Patent number: 9929508
    Abstract: An electrical connector system is presented herein. The electrical connector system includes a first connector body containing a first plurality of terminals and a second connector body containing a second plurality of terminals that are configured to interconnect with the first plurality of terminals. The second connector body is configured to receive the first connector body. The electrical connector system further includes a locking feature configured to secure the first connector body to the second connector body in a pre-staged position in which the first plurality of terminals is not connected to the second plurality of terminals and further configured to secure the first connector body to the second connector body in a staged position in which the first plurality of terminals is connected to the second plurality of terminals after disengaging the locking feature in the pre-staged condition.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: March 27, 2018
    Assignee: DELPHI TECHNOLOGIES, INC.
    Inventors: Ronald A. Puhl, Faviola Ramon
  • Patent number: 9923303
    Abstract: An electrical connector configured to be mated with a corresponding counter connector to establish an electrical connection is presented. The connector includes a connector housing having at least one terminal cavity for receiving at least one female contact terminal. The cavity defines a first cavity portion and a second cavity portion. A step is arranged between the first and the second cavity portion. A female contact terminal likewise comprises a step arranged between first and second terminal portions such that, in a mounted condition, the respective steps of terminal cavity and female contact terminal engage each other.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: March 20, 2018
    Assignee: DELPHI TECHNOLOGIES, INC.
    Inventors: Peter Nuetzel, Vincent Regnier, Michael Gunreben
  • Patent number: 9923327
    Abstract: The present invention refers to an exchangeable crimping die insert for a crimping die for crimping electrical contact terminals to electrical cables. The exchangeable crimping die insert includes a first and second crimp profile integrated in one part, the first crimp profile having an essentially identical profiles with the second crimp profile. Furthermore, the exchangeable crimping die insert includes an indicator to differentiate the first crimp profile from the second crimp profile.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: March 20, 2018
    Assignee: DELPHI TECHNOLOGIES, INC.
    Inventors: Swindhard Packebusch, Frank Ochse
  • Patent number: 9915003
    Abstract: An electrical contact element formed of sheet metal having a first region and a second region. Each one of the first and second regions is coated with a coating including a first layer containing a first material having a lower standard electrode potential than the sheet metal material. The coating includes a second layer in the first region which is absent in the second region. The second layer is arranged underneath the first layer and contains a second material that has a lower standard electrode potential than the first material.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: March 13, 2018
    Assignee: DELPHI TECHNOLOGIES, INC.
    Inventor: Markus Gaertner
  • Patent number: 9917381
    Abstract: An electrical connector including electrical terminals along with a connector housing defining a first and second cavity, the first and second cavities configured to receive the terminals. The connector housing further defines a third cavity extending along a lateral axis. The electrical connector includes a terminal position assurance (TPA) device received within the third cavity. The TPA device is moveable from an terminal insertion position to a terminal locking position. The TPA device has flexible first and second primary locking features and rigid first and second secondary locking features configured to engage locking features of the terminals. Only the first primary and first secondary locking features engage the locking surface of the first electrical terminal and only the second primary and second secondary locking features engage the locking surface of the second electrical terminal when the TPA device is in the terminal locking position.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: March 13, 2018
    Assignee: Delphi Technologies, Inc.
    Inventors: Jeffrey Scott Campbell, Wesley W. Weber, Jr.
  • Patent number: 9917402
    Abstract: A connector includes a first-housing, a second-housing, a shroud, and a stacked-gear. The first-housing defines a guide-slot. The second-housing mates with the first-housing. The second-housing includes a linear-gear-rack extending from a second-outer-surface and engages the guide-slot. The shroud is moveable from an unmated-position to a mated-position. The shroud is longitudinally slideably mounted to and surrounding at least a portion of the first-housing. The shroud also includes a curved-gear-rack having a variable-pitch-radius. The stacked-gear is moveably mounted to the first-housing. The stacked-gear has a round-gear and a cam-gear having the variable-pitch-radius in communication with the round-gear. The round-gear engages the linear-gear-rack within the guide-slot. The cam-gear engages the curved-gear-rack such that the cam-gear moves in response to a movement of the shroud from the unmated-position to the mated-position.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: March 13, 2018
    Assignee: DELPHI TECHNOLOGIES, INC.
    Inventors: Jeffrey Scott Campbell, Wesley W. Weber, Jr.
  • Patent number: 9917434
    Abstract: A wire cable assembly, such as those used in electric or hybrid electric vehicles, having a plurality of shielded wire cables spliced together. The center conductors are joined together and enclosed in an inner insulator. The shield conductors of the cable are joined by an electrically conductive sleeve enclosing the inner insulator and attached to the shield conductors of the shielded wire cables. The sleeve separates the outer insulating layers of the shielded wire cables. The sleeve is encased by an outer insulator that is sealed to the outer insulating layers of the shielded wire cables. A method of splicing shielded wire cables together is also presented.
    Type: Grant
    Filed: October 30, 2013
    Date of Patent: March 13, 2018
    Assignee: DELPHI TECHNOLOGIES, INC.
    Inventors: Terry A. George, Eric B. Poma, Jeremy M. Richardson, Brian K. Dew, William J. Palm, Bruce D. Taylor, John Raymond Metzger
  • Patent number: 9914475
    Abstract: A humanized steering system for an automated vehicle includes one or more steering-wheels operable to steer a vehicle, an angle-sensor configured to determine a steering-angle of the steering-wheels, a hand-wheel used by an operator of the vehicle to influence the steering-angle and thereby manually steer the vehicle, a steering-actuator operable to influence the steering-angle thereby steer the vehicle when the operator does not manually steer the vehicle, a position-sensor operable to indicate a relative-position an object proximate to the vehicle, and a controller. The controller is configured to receive the steering-angle and the relative-position, determine, using deep-learning techniques, a steering-model based on the steering-angle and the relative-position, and operate the steering-actuator when the operator does not manually steer the vehicle to steer the vehicle in accordance with the steering-model, whereby the vehicle is steered in a manner similar to how the operator manually steers the vehicle.
    Type: Grant
    Filed: October 5, 2015
    Date of Patent: March 13, 2018
    Assignee: DELPHI TECHNOLOGIES, INC.
    Inventors: Ludong Sun, Michael H. Laur, Jonathan L. Wieskamp, Miao Yan
  • Patent number: 9912101
    Abstract: A connector includes a first housing, a second housing, a mate assist slider, and a cam gear. The first-housing has a first outer surface. The second housing is configured to mate with the first housing, and the second housing includes a pin extending from a second outer surface. The connector also includes a mate assist slider moveable from an unmated position to a mated position. The connector also includes a cam gear mounted to the first outer surface. The cam gear moves in response to a movement of the mate-assist-slider from the unmated position to the mated position. The cam gear has a cam slot with an inertial detent. A vibratory feedback is provided to an assembler indicative of a properly positioned connector housing when the pin is moved past the inertial detent.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: March 6, 2018
    Assignee: DELPHI TECHNOLOGIES, INC
    Inventors: Jeffrey Scott Campbell, Wesley W. Weber, Jr.
  • Patent number: 9910151
    Abstract: A radar object detection system includes a first sensor and a controller. The first sensor emits a first radar signal toward a first area about a vehicle, and outputs a first signal indicative of detected targets proximate to the vehicle. The controller receives the first signal from the first sensor, determines when a trailer is connected to the vehicle based on the first signal, defines a shadow-zone that corresponds to a first portion of the first area obstructed by the trailer from being viewed by the first sensor, and ignores detected targets within the shadow-zone that are indicated by the first signal.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: March 6, 2018
    Assignee: DELPHI TECHNOLOGIES, INC.
    Inventor: Robert J. Cashler
  • Patent number: 9910440
    Abstract: An escape-path-planning system to operate an automated vehicle includes an object-detector and a controller. The object-detector is suitable for use on a host-vehicle. The object-detector is used to detect an other-vehicle in an adjacent-lane next to a present-lane traveled by the host-vehicle. The controller is in communication with the object-detector. The controller is configured to, in response to a lane-change-request, determine a first-route-plan that steers the host-vehicle from the present-lane to the adjacent-lane, determine a second-route-plan that steers the host-vehicle into the present-lane, initiate the first-route-plan when a forecasted-distance between the other-vehicle and the host-vehicle is greater than a distance-threshold, and cancel the first-route-plan and select the second-route-plan when the forecasted-distance between the other-vehicle and the host-vehicle becomes less than the distance-threshold after the first-route-plan is initiated.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: March 6, 2018
    Assignee: DELPHI TECHNOLOGIES, INC.
    Inventors: Junqing Wei, Wenda Xu, Jarrod M. Snider
  • Patent number: 9911056
    Abstract: In a method of generating a training image for teaching of a camera-based object recognition system suitable for use on an automated vehicle which shows an object to be recognized in a natural object environment, the training image is generated as a synthetic image by a combination of a base image taken by a camera and of a template image in that a structural feature is obtained from the base image and is replaced with a structural feature obtained from the template image by means of a shift-map algorithm.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: March 6, 2018
    Assignee: DELPHI TECHNOLOGIES, INC.
    Inventors: Anslem Haselhoff, Dennis Mueller, Mirko Meuter, Christian Nunn
  • Patent number: 9901018
    Abstract: An electrically conductive hybrid polymer material is described herein. The hybrid polymer material includes 0.01% to 1% by weight of carbon nanoparticles, 1% to 10% by weight of a conductive polymeric material, 1% to 20% of electrically conductive fibers having a metallic surface and 69% or more by weight of a nonconductive polymeric base material. The carbon nanoparticles may be carbon nanotubes, graphite nanoparticles, graphene nanoparticles, and/or fullerene nanoparticles. The conductive polymeric material may be an inherently conductive polymer, a radical polymers, or an electroactive polymer. The electrically conductive fibers may be stainless steel fibers, metal plated carbon fibers, or metal nanowires. The nonconductive polymeric base material may be selected from materials that are pliable at temperatures between ?40° C. and 125° C. or materials that are rigid in this temperature range.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: February 20, 2018
    Assignee: Delphi Technologies, Inc.
    Inventors: Zachary J. Richmond, Evangelia Rubino, Anshuman Shrivastava
  • Patent number: 9899758
    Abstract: An electrical connector system including a first connector having a lock nib extending from a floor into a terminal cavity and a flexible member overlying the floor. The beam has two terminal hold down bumps extending into the terminal receiving cavity. The electrical connector system also includes a terminal having a lock edge. The terminal is received in the terminal cavity such that the hold down bumps engage a top surface of the terminal, applying a force that biases the terminal towards the rigid floor. The lock nib engages the lock edge, thereby preventing the terminal from being inadvertently withdrawn from the terminal cavity. A second connector defines a shroud into which a portion of the first connector is inserted, wherein the beam compressively contacts an inner surface of the second connector further increasing the force applied to the terminal. The connectors may be formed by an additive manufacturing process.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: February 20, 2018
    Assignee: Delphi Technologies, Inc.
    Inventors: John R. Morello, James M. Rainey, Gerald A. Rhinehart, Jr.
  • Patent number: 9899128
    Abstract: A data transmission cable assembly includes an elongate first conductor, an elongate second conductor, and a sheath at least partially axially surrounding the first and second conductors. The sheath contains a plurality of electrically conductive particles interspersed within a matrix formed of an electrically insulative polymeric material. The conductive particles may be formed of a metallic material or and inherently conductive polymer material. The plurality conductive particles may be filaments that form a plurality of electrically interconnected networks. Each network is electrically isolated from every other network. Each network contains less than 125 filaments and/or has a length less than 13 millimeters. The bulk conductivity of the sheath is substantially equal to the conductivity of the electrically insulative polymeric material. The data transmission cable assembly does not include a terminal that is configured to connect the sheath to an electrical ground.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: February 20, 2018
    Assignee: Delphi Technologies, Inc.
    Inventors: Richard J. Boyer, John F. Heffron, Evangelia Rubino, Zachary J. Richmond
  • Patent number: 9898008
    Abstract: A scenario aware perception system suitable for use on an automated vehicle includes a traffic-scenario detector, an object-detection device, and a controller. The traffic-scenario detector is used to detect a present-scenario experienced by a host-vehicle. The object-detection device is used to detect an object proximate to the host-vehicle. The controller is in communication with the traffic-scenario detector and the object-detection device. The controller configured to determine a preferred-algorithm used to identify the object. The preferred-algorithm is determined based on the present-scenario.
    Type: Grant
    Filed: March 22, 2016
    Date of Patent: February 20, 2018
    Assignee: Delphi Technologies, Inc.
    Inventors: Wenda Xu, Jarrod M. Snider, Junqing Wei
  • Patent number: 9897466
    Abstract: A motor control system includes a shaft configured to be rotationally driven by a motor. A rotor position sensor is configured to detect rotation of the shaft and output a rotor position signal. A controller is in communication with the motor and the rotor position sensor. The controller converts the rotor position signal to an angle with error, tracks the angle with error to provide an angle that retains mechanical dynamics as stationary reference frame signals, transforms the stationary reference frame signals and the angle with mechanical dynamics to rotating reference frame signals, filters the rotating reference frame signals, transforms the filtered rotating reference frame signals to provide filtered stationary frame signals, and takes an arctangent of the filtered stationary reference frame signals to create a corrected motor control angle. The controller commands the motor based upon the corrected motor control angle.
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: February 20, 2018
    Assignee: DELPHI TECHNOLOGIES, INC.
    Inventor: James E. Walters