Patents Assigned to Desktop Metals, Inc.
  • Publication number: 20220168812
    Abstract: Disclosed is the measurement and control of height in the Z-axis of layers produced in an additive manufacturing process. The height of layers being deposited can be monitored, which may involve the use of a fiducial tower to measure a global errors or optical or other means to measure layers on a layer-by-layer basis. Droplet size, pitch and other conditions may be modified to ameliorate or correct detected errors.
    Type: Application
    Filed: March 20, 2020
    Publication date: June 2, 2022
    Applicant: Desktop Metal, Inc.
    Inventor: Mark Gardner Gibson
  • Publication number: 20220168808
    Abstract: According to some aspects, techniques are described for fabricating sinterable metallic parts using a binder formulation that comprises a water-soluble polyamide, such as nylon. A binder comprising a water-soluble polyamide may allow a binder jetting process to produce high strength brown parts due to the toughness of such binders as compared to other water soluble binders such as polyacrylic acid or polyvinyl alcohol. Water soluble polyamides may simultaneously provide higher printhead reliability due to their water retaining characteristics and avoid the use of more expensive, toxic and often flammable solvents. Additionally, polyamide binders may react at a curing temperature with the properly selected humectants such as ethylene urea or hydantoin to create a part that is insensitive to strength loss due to moisture in the cured state.
    Type: Application
    Filed: December 1, 2021
    Publication date: June 2, 2022
    Applicant: Desktop Metal, Inc.
    Inventor: Robert J. Nick
  • Publication number: 20220161330
    Abstract: A dross removal system for magnetohydrodynamic additive. A vacuum source is used to create a pressure differential at a nozzle opening sufficient to collect dross from a pool of molten metal. The dross and any collected molten metal can be captured in a waste bin for later disposal.
    Type: Application
    Filed: March 20, 2020
    Publication date: May 26, 2022
    Applicant: Desktop Metal, Inc.
    Inventors: Mark Gardner Gibson, Julian Bell, Emanuel Michael Sachs
  • Patent number: 11338365
    Abstract: Devices, systems, and methods are directed to applying magnetohydrodynamic forces to liquid metal to eject liquid metal along a controlled pattern, such as a controlled three-dimensional pattern as part of additive manufacturing of an object. Electric current delivered to a meniscus of the liquid metal in a quiescent state can be directed to exert a pullback force on the liquid metal. The pullback force can be sufficient to draw the liquid metal, in the quiescent state, in a direction toward the nozzle to reduce the likelihood of unintended wetting of surfaces of the nozzle between uses of the nozzle.
    Type: Grant
    Filed: March 6, 2017
    Date of Patent: May 24, 2022
    Assignee: Desktop Metal, Inc.
    Inventors: Emanuel Michael Sachs, Paul A. Hoisington
  • Publication number: 20220152706
    Abstract: A controlled environment system for the additive manufacture of metal objects using magnetohydrodynamic jetting. A sealing plate is placed against an Péclet gap seal of a volume enclosure. A flow of inert gas is used to maintain a high-purity volume in the interior of the volume enclosure. A print head accesses the interior and delivers build material through a hole in the sealing plate. A build plate is movable relative to the sealing plate within the interior of the volume enclosure on which objects can be fabricated.
    Type: Application
    Filed: March 20, 2020
    Publication date: May 19, 2022
    Applicant: Desktop Metal, Inc.
    Inventors: Mark Gardner Gibson, Julian Bell
  • Publication number: 20220129600
    Abstract: Systems and methods are disclosed for generating designs for mechanical parts in a computer aided design (CAD) context. One method includes generating a model of a mechanical part, the model including one or more cells, wherein each cell is comprised of a plurality of parameterized representations, each of the plurality of parameterized representations representing a material property; determining, for each cell, a cell-specific parameter value for each of the parameterized representations; comparing, for each cell, each of the cell-specific parameter values to a corresponding threshold parameter value associated with each of the representations of the material properties; and generating at least one additional cell or removing at least one of the one or more cells based on the comparison of each cell-specific parameter value to the corresponding threshold parameter value.
    Type: Application
    Filed: January 4, 2022
    Publication date: April 28, 2022
    Applicant: Desktop Metal, Inc.
    Inventors: Andrew Fiske Roberts, Christian Gomez
  • Patent number: 11281820
    Abstract: Systems and methods are disclosed for generating designs for mechanical parts in a computer aided design (CAD) context. One method includes generating a model of a mechanical part, the model including one or more cells, wherein each cell is comprised of a plurality of parameterized representations, each of the plurality of parameterized representations representing a material property; determining, for each cell, a cell-specific parameter value for each of the parameterized representations; comparing, for each cell, each of the cell-specific parameter values to a corresponding threshold parameter value associated with each of the representations of the material properties; and generating at least one additional cell or removing at least one of the one or more cells based on the comparison of each cell-specific parameter value to the corresponding threshold parameter value.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: March 22, 2022
    Assignee: Desktop Metal, Inc.
    Inventors: Andrew Fiske Roberts, Christian Gomez
  • Publication number: 20220075334
    Abstract: A system for generating a user-adjustable furnace profile, comprises a user interface configured to receive one or more materials properties from a user, a processor, and a memory with computer code instructions stored thereon. The memory is operatively coupled to the processor such that, when executed by the processor, the computer code instructions cause the system to implement communicating with a furnace to ascertain one or more thermal processes associated with the furnace, identifying one or more object characteristics associated with an object to be processed by furnace, and determining a thermal processing parameter profile of at least one thermal processing parameter corresponding to each of the thermal processes, based on (i) the one or more part characteristics and (ii) the one or more materials properties, the thermal processing parameter profile characterizing a cycle of the one or more thermal processes.
    Type: Application
    Filed: October 21, 2021
    Publication date: March 10, 2022
    Applicant: Desktop Metal, Inc.
    Inventors: Nihan Tuncer, Brian D. Kernan, Animesh Bose, Mark Sowerbutts
  • Publication number: 20220065533
    Abstract: The present disclosure includes a furnace for heating and/or sintering one or more three-dimensional printed metal parts. The furnace includes a furnace chamber, insulation within the furnace chamber, a retort within the furnace chamber, and one or more getters containing getter material. The retort is configured to receive the one or more three-dimensional printed metal parts.
    Type: Application
    Filed: August 27, 2021
    Publication date: March 3, 2022
    Applicant: Desktop Metal, Inc.
    Inventors: Nathan Woodard, Shashank Holenarasipura Raghu, Michael Andrew Gibson
  • Patent number: 11241836
    Abstract: An additive manufacturing apparatus, and corresponding method, determine a mass (or volume) output flow rate of extrudate used in three-dimensional (3D) printing, and such determination is insensitive to rheological properties of a material of the extrudate being printed. A thermal energy balance on a liquefying extrusion head enables a load on a heater, used to heat the extrusion head, to be related to the output flow rate of extrudate. Based on the thermal energy balance, the output flow rate may be determined based on a duty cycle of the heater. The output flow rate may be employed to affect the 3D printing to prevent over- or under-extrusion of the extrudate and to identify a fault condition.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: February 8, 2022
    Assignee: Desktop Metal, Inc.
    Inventors: Alexander C. Barbati, Jonah Samuel Myerberg
  • Patent number: 11241741
    Abstract: For conditioning build material for fused filament fabrication, thermal power is both added to and removed from a nozzle in a manner that can reduce sensitivity of the nozzle temperature to fluctuations in build material feed rate. The amount of thermal power added is at least as large as the sum of the amount removed, the amount to condition the material, and losses to the environment. The amount removed may be at least as large as half the thermal power required to condition the material to extrusion temperature, and may be comparable to, or much larger than the conditioning amount. The larger the ratio of the amount removed to the conditioning amount, the less sensitive the nozzle temperature will be to fluctuations in build material feed rate. Fine temperature control arises, enabling building with metal-containing multi-phase materials or other materials that have a narrow working temperature range.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: February 8, 2022
    Assignee: Desktop Metal, Inc.
    Inventors: Emanuel Michael Sachs, Uwe Bauer, Jonah Samuel Myerberg, Nicholas Graham Bandiera
  • Publication number: 20220032377
    Abstract: Systems and methods are disclosed for forming a three-dimensional object using additive manufacturing. One method includes depositing a first amount of powder material onto a powder print bed of a printing system, spreading the first amount of powder material across the powder print bed to form a first layer, measuring a density of powder material within the powder print bed, and adjusting a parameter of the printing system based on the measured density of the powder material within the powder print bed.
    Type: Application
    Filed: July 8, 2021
    Publication date: February 3, 2022
    Applicant: Desktop Metal, Inc.
    Inventors: George Hudelson, Paul A. Hoisington, Richard Remo Fontana, Emanuel Michael Sachs, Christopher Anthony Craven, Matthew McCambridge
  • Patent number: 11235386
    Abstract: A debinder provides for debinding printed green parts in an additive manufacturing system. The debinder can include a storage chamber, a process chamber, a distill chamber, a waste chamber, and a condenser. The storage chamber stores a liquid solvent for debinding the green part. The process chamber debinds the green part using a volume of the liquid solvent transferred from the storage chamber. The distill chamber collects a solution drained from the process chamber and produces a solvent vapor from the solution. The condenser condenses the solvent vapor to the liquid solvent and transfer the liquid solvent to the storage chamber. The waste chamber collects a waste component of the solution.
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: February 1, 2022
    Assignee: Desktop Metal, Inc.
    Inventors: Daniel R. Jepeal, Paul E. Dresens
  • Patent number: 11237529
    Abstract: A system for generating a user-adjustable furnace profile, comprises a user interface configured to receive one or more materials properties from a user, a processor, and a memory with computer code instructions stored thereon. The memory is operatively coupled to the processor such that, when executed by the processor, the computer code instructions cause the system to implement communicating with a furnace to ascertain one or more thermal processes associated with the furnace, identifying one or more object characteristics associated with an object to be processed by furnace, and determining a thermal processing parameter profile of at least one thermal processing parameter corresponding to each of the thermal processes, based on (i) the one or more part characteristics and (ii) the one or more materials properties, the thermal processing parameter profile characterizing a cycle of the one or more thermal processes.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: February 1, 2022
    Assignee: Desktop Metal, Inc.
    Inventors: Nihan Tuncer, Brian Kernan, Animesh Bose, Mark Sowerbutts
  • Publication number: 20220016700
    Abstract: A sintering and debinding system includes a debinding chamber configured to switch between an open state and a closed state, the open state being configured to permit receipt or removal of at least one part within or from the debinding chamber and a sintering chamber operably connected to the debinding chamber and being vertically positioned above or below the debinding chamber. The sintering system also includes a shelf structure configured to receive the at least one part, the shelf structure being movable between the debinding chamber and the sintering chamber and a gate valve configured to switch between an open state and a closed state, the gate valve being configured to selectively permit or block fluid communication between the debinding chamber and the sintering chamber.
    Type: Application
    Filed: March 13, 2020
    Publication date: January 20, 2022
    Applicant: Desktop Metal, Inc.
    Inventors: Nathan Woodard, Richard Remo Fontana, Robert Edward Weiss
  • Publication number: 20220008991
    Abstract: A furnace may include an outer wall defining a chamber, the chamber including an internal cavity configured to receive one or more parts, at least one heater positioned within the chamber, the at least one heater being configured to generate temperatures of at least about 800 degrees Celsius within the internal cavity, and a vacuum pump configured to apply a vacuum to at least a portion of the chamber. The furnace may also include at least one layer of inner insulation and at least one layer of outer insulation disposed outward of the inner insulation with respect to the chamber, the at least one layer of outer insulation being sealed with respect to the at least one layer of inner insulation.
    Type: Application
    Filed: February 11, 2020
    Publication date: January 13, 2022
    Applicant: Desktop Metal, Inc.
    Inventors: Nathan Woodard, Jonah Samuel Myerberg, Emanuel M Sachs, Richard Remo Fontana, Robert Edward Weiss, Yet-Ming Chiang, Stephen Dipietro, Nicholas Graham Bandiera
  • Publication number: 20210402473
    Abstract: Mold lock is remediated by performing a layer-by-layer, two-dimensional analysis to identify unconstrained removal paths for any support structure or material within each two-dimensional layer, and then ensuring that aligned draw paths are present for all adjacent layers, all as more specifically described herein. Where locking conditions are identified, a sequence of modification rules are then applied, such as by breaking support structures into multiple, independently removable pieces. By addressing mold lock as a series of interrelated two-dimensional geometric problems, and reserving three-dimensional remediation strategies for more challenging, complex mold lock conditions, substantial advantages can accrue in terms of computational speed and efficiency.
    Type: Application
    Filed: September 14, 2021
    Publication date: December 30, 2021
    Applicant: Desktop Metal, Inc.
    Inventors: Ricardo Chin, Blake Z. Reeves
  • Publication number: 20210394265
    Abstract: The present invention generally relates to compositions comprising a binder and a metal powder, and associated methods. Some compositions provided include a polymer and a metal powder. Some compositions provided include a binder formulation and a metal powder. The binder formulation generally includes a first liquid and a polymer. The binder formulation may be a solution. The polymer may include a nitrogen-containing repeat unit. The metal powder may include a noble metal. Some methods provided include combining a metal powder with a binder formulation. Methods provided include but are not limited to additive manufacturing processes and injection molding processes.
    Type: Application
    Filed: October 16, 2019
    Publication date: December 23, 2021
    Applicant: Desktop Metal, Inc.
    Inventors: Ilya L. Rushkin, Yun Bai, Shannon Lee
  • Patent number: D944472
    Type: Grant
    Filed: October 10, 2019
    Date of Patent: February 22, 2022
    Assignee: Desktop Metal, Inc.
    Inventors: Peter Schmitt, Justin Cumming
  • Patent number: D952008
    Type: Grant
    Filed: May 21, 2019
    Date of Patent: May 17, 2022
    Assignee: Desktop Metal, Inc.
    Inventors: Peter Schmitt, Justin Cumming, Alex Fishman, Ric Fulop, Rick Chin, Jonah Samuel Myerberg, Yves Behar, Brandon Heiman