Patents Assigned to Desktop Metals, Inc.
  • Patent number: 11014163
    Abstract: A camera assembly is employed in additive manufacturing to improve the fidelity of a printed object. The camera may scan the surface of a build plate of a 3D printer and an object as it is being printed to generate image data. The image data is processed to detect errors in the build plate or printed object. The printer compensates for the detected errors, which can including modifying the printer configuration and/or modifying the instructions for printing a given object. Using the updated configuration, subsequent objects may then be printed, under a corrected process, to produce an object with fidelity to an original object model.
    Type: Grant
    Filed: April 14, 2017
    Date of Patent: May 25, 2021
    Assignee: Desktop Metal, Inc.
    Inventors: Aaron Preston, Nicholas Mykulowycz
  • Publication number: 20210147665
    Abstract: Techniques for debinding additively fabricated parts are described that do not require solvent debinding or catalytic debinding, and that may be performed using only thermal debinding in a furnace. As a result, in at least some cases debinding and sintering may take place sequentially within a single furnace. In some embodiments, the techniques may utilize particular materials as binders that allow for a thermal debinding process that does not negatively affect the parts.
    Type: Application
    Filed: November 13, 2020
    Publication date: May 20, 2021
    Applicant: Desktop Metal, Inc.
    Inventors: John Reidy, Christopher Craven, Nihan Tuncer, Animesh Bose, Alexander C. Barbati, Ricardo Fulop, Brian D. Kernan, Karl-Heinz Schofalvi
  • Publication number: 20210146622
    Abstract: A method of recycling build material powder including collecting in a keg an amount of excess build material powder during the additive manufacturing of a part cake. The part cake and keg are transferred to a de-powdering station. The part cake is de-powdered to release a mixture of reusable powder and contaminants. The mixture is sieved to remove the contaminants and deposit the reusable powder to the keg.
    Type: Application
    Filed: November 16, 2020
    Publication date: May 20, 2021
    Applicant: Desktop Metal, Inc.
    Inventors: Jonah Myerberg, Peter Schmitt
  • Publication number: 20210138550
    Abstract: Methods of additive manufacturing, binder compositions for additive manufacturing, and articles produced by and/or associated with methods of additive manufacturing are generally described.
    Type: Application
    Filed: October 20, 2020
    Publication date: May 13, 2021
    Applicant: Desktop Metal, Inc.
    Inventors: Christopher Benjamin Renner, Ilya L. Rushkin, Emanuel M. Sachs
  • Patent number: 10996652
    Abstract: Methods provide for fabricating objects through additive manufacturing in a manner that compensates for deformations introduced during post-print processing, such as sintering. An initial model may be divided into a plurality of segments, the initial model defining geometry of an object. For each of the segments, modified geometry may be calculated, where the modified geometry compensates for a predicted deformation. Print parameters can then be updated to incorporate the modified geometry, where the print parameters define geometry of the printed object (e.g., configuration settings of the printer, a tool path, an object model). The object may then be printed based on the updated print parameters.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: May 4, 2021
    Assignee: Desktop Metal, Inc.
    Inventors: Ricardo Chin, Michael A. Gibson, Blake Z. Reeves, Shashank Holenarasipura Raghu
  • Publication number: 20210114308
    Abstract: An additive manufacturing system, and corresponding method, prints a sacrificial component using a 3D printing system that includes a spreading mechanism for spreading unbound powder to form layers of a powder bed and a printing mechanism for jetting binder fluid into the unbound powder to form the sacrificial component. The system forms the sacrificial component with a feature that provides a resistive force to a shear force imposed by the spreading mechanism during the spreading. The system prints a part with the 3D printing system in a coupled arrangement with the sacrificial component. The coupled arrangement in combination with the resistive force is sufficient to immobilize each printed layer of the part to resist the shear force imposed by the spreading mechanism during spreading of the unbound powder above each printed layer of the part. After printing, and before or after post-processing, the part and sacrificial component are separated.
    Type: Application
    Filed: December 28, 2020
    Publication date: April 22, 2021
    Applicant: Desktop Metal, Inc.
    Inventors: George Hudelson, Alexander Nicholas LeGendre, Kelvin Wiebe
  • Publication number: 20210114110
    Abstract: A method of maintaining part geometry fidelity during infiltration of a metallic preform. The preform and an infiltration barrier are formed, either independently or together during an additive manufacturing process. The infiltration barrier prevents infiltrant from bleeding out from the preform where it is present, thus protecting fine geometries that would otherwise be filled with infiltrant.
    Type: Application
    Filed: July 12, 2019
    Publication date: April 22, 2021
    Applicant: Desktop Metal, Inc.
    Inventors: Timothy Sercombe, Ellen Benn, Michael Andrew Gibson, Nihan Tuncer
  • Publication number: 20210108856
    Abstract: A sintering furnace may include a furnace chamber and a retort located within the furnace chamber that receives a part to be heated. The furnace may also include one or more heating elements positioned around the retort and a power controller including power modules connected in series. The power modules may be operably connected to the one or more heating elements and may provide a direct current (DC) power output. A controller may selectively control the power modules to supply power to the one or more heating elements.
    Type: Application
    Filed: October 12, 2020
    Publication date: April 15, 2021
    Applicant: Desktop Metal, Inc.
    Inventors: Richard Remo Fontana, Leon Fay
  • Patent number: 10974299
    Abstract: 3D printing using certain materials, such as metal containing multi-phase materials can be prone to clogs and other flow interruptions. Providing build material according to feed rate profiles having varying rates can mitigate these problems. Each feed rate profile can be broken up into blocks of time, some of which relate to fabricating the exterior geometry of the object. Each block of time can be represented by a FFT. The blocks that relate to the exterior are represented by a FFT that has significant high frequency content of 1 Hz or greater. It is beneficial to use profiles including feed rates outside of a range of feed rates suitable for steady state extrusion, being either higher or lower rates than the range limits. A combination of feed rate profiles based only on clog and flow interruption mitigation and operational to print the part according to a model can be used.
    Type: Grant
    Filed: July 17, 2018
    Date of Patent: April 13, 2021
    Assignee: Desktop Metal, Inc.
    Inventors: Uwe Bauer, Emanuel Michael Sachs, Mark Gardner Gibson, Nicholas Graham Bandiera
  • Publication number: 20210078259
    Abstract: Systems and methods for forming an object using additive manufacturing. One method includes receiving a digital model of the object, predicting a shrinking characteristic or receiving a predicted shrinking characteristic of the object that will occur during thermal processing of the object, once formed, and generating, based on the shrinking characteristic of the object, instructions for forming a raft on which the object will be formed. The instructions for forming the raft are configured to form a raft having a shrinking characteristic that reflects the shrinking characteristic of the object.
    Type: Application
    Filed: September 11, 2020
    Publication date: March 18, 2021
    Applicant: Desktop Metal, Inc.
    Inventors: Jay Tobia, Aaron M. Preston, Alexander C. Barbati
  • Publication number: 20210078075
    Abstract: A compound sintering furnace with managed contamination for debinding and sintering parts. An inner insulation layer is disposed within an outer insulation layer and has an internal hot face surrounding a work zone. A sealed housing surrounds the inner insulation layer and is composed of a refractory material capable of withstanding a service temperature greater than a debinding temperature and less than a sintering temperature. An outer heater system is configured to heat at least a portion of the sealed housing and externally heat the inner insulation layer to, in conjunction with an inner heater system, heat the work zone to the debinding temperature, and inhibit condensation of a binder within and upon the inner insulation layer during a debinding process. The inner heater system is configured to internally heat the inner insulation and heat the work zone to the sintering temperature.
    Type: Application
    Filed: September 11, 2020
    Publication date: March 18, 2021
    Applicant: Desktop Metal, Inc.
    Inventor: Nathan Woodard
  • Patent number: 10940533
    Abstract: A system and corresponding method for additive manufacturing of a three-dimensional (3D) object to improve packing density of a powder bed used in the manufacturing process. The system and corresponding method enable higher density packing of the powder. Such higher density packing leads to better mechanical interlocking of particles, leading to lower sintering temperatures and reduced deformation of the 3D object during sintering. An embodiment of the system comprises means for adjusting a volume of a powder metered onto a top surface of the powder bed to produce an adjusted metered volume and means for spreading the adjusted metered volume to produce a smooth volume for forming a smooth layer of the powder with controlled packing density across the top surface of the powder bed. The controlled packing density enables uniform shrinkage, without warping, of the 3D object during sintering to produce higher quality 3D printed objects.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: March 9, 2021
    Assignee: Desktop Metal, Inc.
    Inventors: George Hudelson, Emanuel M. Sachs, Glenn A. Jordan, Midnight Zero
  • Publication number: 20210060651
    Abstract: Techniques for depowdering in additive fabrication are provided. According to some aspects, techniques are provided that separate powder from additively fabricated parts through liquid immersion of the parts. Motion of the liquid, such as liquid currents, may dislodge or otherwise move powder away from additively fabricated parts to which it is adhered or otherwise proximate to. The liquid may also provide a vehicle to carry away powder from the additively fabricated parts. Removed powder may be filtered or otherwise separated from the liquid to allow recirculation of the liquid to the parts and/or to enable re-use of the powder in subsequent additive fabrication processes. Techniques for depowdering through liquid immersion may be automated, thereby mitigating challenges associated with manual depowdering operations.
    Type: Application
    Filed: August 21, 2020
    Publication date: March 4, 2021
    Applicant: Desktop Metal, Inc.
    Inventors: Jamison Go, Daniel Sachs, Robert J. Nick, Jonah Samuel Myerberg, Michael Goldblatt
  • Patent number: 10933582
    Abstract: Devices, systems, and methods are directed to the use of vapor phase change in binder jetting processes for forming three-dimensional objects. In general, a vapor of a first fluid may be directed to a layer of a powder spread across a build volume. The vapor may condense to reduce mobility of the particles of the powder of the layer. For example, the condensing vapor may reduce the likelihood of particle ejection from the layer and, thus, may reduce the likelihood of clogging or otherwise degrading a printhead used to jet a second fluid (e.g., a binder) to the layer. Further, or instead, the condensing vapor may increase the density of the powder in the layer which, when repeated over a plurality of layers forming a three-dimensional object, may reduce the likelihood of slumping of the part during sintering.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: March 2, 2021
    Assignee: Desktop Metal, Inc.
    Inventors: Emanuel Michael Sachs, George Hudelson, Paul A. Hoisington, Christopher Benjamin Renner, Keith Roy Vaillancourt, Edward Russell Moynihan
  • Publication number: 20210053113
    Abstract: Methods of additive manufacturing, binder compositions for additive manufacturing, and articles produced by and/or associated with methods of additive manufacturing are generally described.
    Type: Application
    Filed: August 20, 2020
    Publication date: February 25, 2021
    Applicant: Desktop Metal, Inc.
    Inventors: Christopher Benjamin Renner, Ilya L. Rushkin, Robert J. Nick, Emanuel M. Sachs
  • Publication number: 20210053121
    Abstract: Techniques for depowdering in additive fabrication are provided. According to some aspects, techniques are provided that separate powder from parts through vibration of the powder, the parts, and/or structures mechanically connected to the powder and/or parts. For instance, the application of vibration may dislodge, aerate and/or otherwise increase the flowability of regions of the powder, thereby making it easier to remove the powder with a suitable means. Techniques for depowdering through vibration may be automated, thereby mitigating challenges associated with manual depowdering operations.
    Type: Application
    Filed: August 10, 2020
    Publication date: February 25, 2021
    Applicant: Desktop Metal, Inc.
    Inventors: Jamison Go, Robert Michael Shydo, Emanuel M. Sachs, Michael Santorella, Midnight Zero, Jonah Samuel Myerberg, Joseph Gabay, Jeffrey von Loesecke, Alexander K. McCalmont
  • Publication number: 20210046519
    Abstract: Techniques for depowdering in additive fabrication are provided. According to some aspects, techniques are provided that separate powder from parts by directing gas onto, or near to, the powder. While fragile green parts, such as green parts produced by binder jetting, may be fragile with respect to scraping or impacts, such parts may nonetheless be resistance to damage from directed gas, even if directed at a high pressure. Techniques for depowdering through directed application of gas may be automated, thereby mitigating challenges associated with manual depowdering operations.
    Type: Application
    Filed: August 3, 2020
    Publication date: February 18, 2021
    Applicant: Desktop Metal, Inc.
    Inventors: Jamison Go, Michael Santorella, Jonah Samuel Myerberg, Matthew McCambridge, Alexander LeGendre, Joseph Gabay, Robert J. Nick, Michael Goldblatt
  • Patent number: 10906249
    Abstract: An additive manufacturing system, and corresponding method, prints a sacrificial component using a 3D printing system that includes a spreading mechanism for spreading unbound powder to form layers of a powder bed and a printing mechanism for jetting binder fluid into the unbound powder to form the sacrificial component. The system forms the sacrificial component with a feature that provides a resistive force to a shear force imposed by the spreading mechanism during the spreading. The system prints a part with the 3D printing system in a coupled arrangement with the sacrificial component. The coupled arrangement in combination with the resistive force is sufficient to immobilize each printed layer of the part to resist the shear force imposed by the spreading mechanism during spreading of the unbound powder above each printed layer of the part. After printing, and before or after post-processing, the part and sacrificial component are separated.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: February 2, 2021
    Assignee: Desktop Metal, Inc.
    Inventors: George Hudelson, Alexander Nicholas LeGendre, Kelvin Wiebe
  • Patent number: D918355
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: May 4, 2021
    Assignee: Desktop Metal, Inc.
    Inventors: Peter Schmitt, Justin Cumming
  • Patent number: D919679
    Type: Grant
    Filed: October 10, 2019
    Date of Patent: May 18, 2021
    Assignee: Desktop Metal, Inc.
    Inventors: Peter Schmitt, Justin Cumming, Matthew Kramer