Abstract: A method for developing a primary collimator is described. The method includes placing a primary collimator element at an intersection of a first set of at least two beams.
Abstract: Apparatuses and method are provided. For example, in one embodiment, a ring electrode includes a plurality of sub-rings adapted to provide an electric field inside a spectrometer. The sub-rings have an internal sub-ring radius. There is a ring insulator between adjacent sub-rings. Each said ring insulator has substantially the same internal radius as the sub-rings. In another embodiment, a method is provided for insertion of the ring electrode inside the spectrometer.
Abstract: A system for detecting contraband. A container is scanned with a first type of contraband detection apparatus. Based on results of the first scan, a plurality of risk values, which correspond to particular types of contraband, are generated. The container is then scanned with a second type (and/or a third type) of contraband detection apparatus. Based on the results of the second scan (and/or the third scan), the risk values are modified. If the combined risk values are above a predetermined value, an alarm is triggered.
Abstract: A method for generating an image of an object using a scanning system includes performing a first portion of a scan in a first scanning mode to acquire a first dataset, receiving a halt command for a conveyor within the scanning system, decelerating the conveyor to a halt based on the halt command using a conveyor controller, and, when the object is present within an examination region after the conveyor has halted, performing a second portion of the scan in a second scanning mode to acquire a second dataset. The second scanning mode is different than the first scanning mode. The method also includes reconstructing the first dataset using a first reconstruction algorithm and reconstructing the second dataset using a second reconstruction algorithm. The second reconstruction algorithm is different than the first reconstruction algorithm. The image is generated using the first reconstructed dataset and the second reconstructed dataset.
Type:
Grant
Filed:
February 26, 2009
Date of Patent:
February 1, 2011
Assignee:
Morpho Detection, Inc.
Inventors:
Samit Kumar Basu, Jian Gao, Steven Leslie Hills, Eugene Alex Ingerman, Pierfrancesco Landolfi, Sussan Pourjavid-Granfors
Abstract: Systems and methods for reducing a degradation effect on a signal are described. One of the methods includes pre-processing data based on a scan of a reference object and a scan of a substance. The reference object includes a material having an atomic number ranging from and including forty to sixty.
Abstract: Disclosed herein is a detection system for identifying an unidentified substance in a sample, comprising light emitting sources, where at least one of the light emitting sources emits light in the infrared region; a circuit board; a trigger, that activates a pulse of electrons from the circuit board to the light emitting sources; a detector; and a central processing unit, where fluorescence generated from the unknown unidentified substance that is illuminated by light from the light emitting sources is collected in the detector and analyzed in the central processing unit.
Type:
Grant
Filed:
September 15, 2009
Date of Patent:
January 18, 2011
Assignee:
Morpho Detection, Inc.
Inventors:
Steven Francis LeBoeuf, Alexey Vasilievich Vert, Rui Chen, Radislav Alexandrovich Potyrailo
Abstract: A passenger screening system including a first gradiometer, and a second gradiometer disposed adjacent the first gradiometer. The first and second gradiometers are each configured to operate at a first frequency and a second frequency to facilitate detecting the presence of an explosive material. A method of operating the passenger screening system is also described herein.
Type:
Grant
Filed:
March 9, 2007
Date of Patent:
January 11, 2011
Assignee:
Morpho Detection, Inc.
Inventors:
Geoffrey Alden Barral, Alexander Robert Perry, Douglas Anthony Taussig
Abstract: An integrated, multi-sensor, Level 1 screening device is described, which system provides a next-generation Explosives Detection System (EDS) that enables high throughput, while drastically reducing false alarms. In exemplary embodiments, the present system comprises a non-rotational, Computed Tomography (CT) system and a non-translational, X-ray diffraction (XRD) system, both in an inline configuration.
Type:
Grant
Filed:
June 29, 2007
Date of Patent:
January 11, 2011
Assignee:
Morpho Detection, Inc.
Inventors:
Peter Michael Edic, Mark E. Vermilyea, Forrest Frank Hopkins, Geoffrey Harding, Pierfrancesco Landolfi
Abstract: A method for fabricating a collimator assembly is provided. The collimator assembly includes a first collimator grid having a first surface and an opposing second surface, wherein the first collimator grid defines a plurality of cells. Each cell of the plurality of cells is aligned in a first direction and extends between the first surface and the second surface. The method includes coupling a reinforcing layer to the first collimator grid such that the reinforcing layer extends substantially perpendicular to the first direction.
Abstract: The calibration tool is provided for use with a detector, such as a detector for detecting trace amounts of one or more substances of interest. The calibration tool includes a body with at least one reservoir for retaining the calibration solution therein. A nib projects from the body and communicates with the reservoir. The nib can be wiped across a detection surface and the detection surface then may be presented to a detector. The detector then can be calibrated for the particular substance of interest in the calibration solution. The calibration tool may include plural reservoirs isolated from one another and plural nibs for applying the calibration solution to a detection surface. A detector kit is also provided.
Abstract: A method to account for cross-talk among a plurality of coherent scatter detectors of a multi-detector inverse fan beam x-ray diffraction imaging (MD-IFB XDI) system. The MD-IFB XDI system includes a multi-focus x-ray source (MFXS) that emits radiation sequentially from a plurality of focus points denoted by F1, F2, . . . Fn with a running index i. The method includes measuring a diffraction profile Xk for each coherent scatter detector Dk of the plurality of coherent scatter detectors. The diffraction profile includes a spectrum of a number of photons measured in a plurality of corresponding coherent scatter detectors. Each coherent scatter detector Dk is corrected to remove scatter from a plurality of primary beams directed to remaining coherent scatter detectors of the plurality of coherent scatter detectors.
Type:
Grant
Filed:
October 31, 2008
Date of Patent:
December 21, 2010
Assignee:
Morpho Detection, Inc.
Inventors:
Geoffrey Harding, Helmut Rudolf Strecker
Abstract: A portable substance identification system and method are configured to identify at least one detection target faster and with greater accuracy than is possible using prior substance identification systems and/or prior substance identification techniques. An embodiment of the portable substance identification system includes a portable substance identification device containing a Raman spectrometer, and a collection stem that includes a dry collector. One or more reservoirs for a liquid medium and/or a reagent can be formed in a cartridge that is configured to couple with a portable substance identification device. The cartridge has a chamber in which the reagent, liquid medium, and a detection target picked up by the dry collector are mixed. A magnet, positioned at a slant angle, can be used to form at least one pellet of aggregated magnetic particles within a pellet forming area of the chamber. The pellet is formed to maximize its surface area.
Type:
Grant
Filed:
December 28, 2007
Date of Patent:
December 14, 2010
Assignee:
Morpho Detection, Inc.
Inventors:
Michael Craig Burrell, Frank Mondello, Tracy Lynn Paxon, William Scott Sutherland, Christopher Montalbano, Gregory Montalbano, Aaron Klein
Abstract: Portable substance identification system and method are configured to identify at least one detection target faster and with greater accuracy than is possible using prior substance identification systems and/or prior substance identification techniques. An embodiment of the portable substance identification system includes a portable substance identification device containing a Raman spectrometer, and a collection stem that includes a collector. One or more reservoirs for a liquid medium and/or at least one reagent can be formed in the collection stem. The cartridge can include a chamber in which the reagents, liquid medium, and at least one detection target picked up by the collector are mixed. A magnet, positioned at a slant angle, can be used to form at least one pellet of aggregated magnetic particles within a pellet forming area of the chamber. The pellet is formed to maximize its surface area.
Type:
Grant
Filed:
December 28, 2007
Date of Patent:
December 7, 2010
Assignee:
Morpho Detection, Inc.
Inventors:
Michael Craig Burrell, Frank Mondello, Tracy Lynn Paxon, William Scott Sutherland, Christopher Montalbano, Gregory Montalbano, Aaron Klein
Abstract: System and method for XRD-based false alarm resolution in computed tomography (“CT”) threat detection systems. Following a scan of an object with a megavoltage CT-based threat detection system, a suspicious area in the object is identified. The three dimensional position of the suspicious area is used to determine a ray path for the XRD-based threat detection system that provides minimal X-ray attenuation. The object is then positioned for XRD scanning of the suspicious area along this determined ray path. The XRD-based threat detection system is configured to detect high density metals (“HDMs) as well as shielded Special Nuclear Materials (“SNMs”) based on cubic or non-cubic diffraction profiles.
Abstract: Methods and systems are provides for measuring multi-dimensional sensing information for identification purposes. The identity of one or more substances is determined through analysis of multidimensional data that can include, among others, intrinsic information as well as extrinsic information. The method for identification of a substance comprises utilizing pattern recognition to form descriptors to identify characteristics of the substance. A system and computer program for performing analysis of the multidimensional data are also described.
Type:
Grant
Filed:
March 20, 2009
Date of Patent:
November 23, 2010
Assignee:
Smiths Detection Inc.
Inventors:
Chang-Meng B. Hsiung, Jing Li, Beth Munoz, Ajoy K. Roy, Michael G. Steinthal, Steven A. Sunshine, Michael A. Vicic, Shou-Hua Zhang
Abstract: A method for automatically inspecting a container for a target material using a computed tomography (CT) scanning system includes performing an initial radiographic scan of the container. Based at least partially on projection data generated during the initial radiographic scan, at least one location within the container is identified that requires CT inspection. A dual energy CT scan of the at least one identified location within the container is performed based on a single energy algorithm or a dual energy algorithm. The dual energy CT scan includes a low energy scan of the at least one identified location and a high energy scan of the at least one identified location. Based on dual energy scan information generated during the dual energy CT scan, a determination is made to confirm or clear an alarm corresponding to the at least one identified location within the container.
Type:
Grant
Filed:
December 31, 2007
Date of Patent:
November 23, 2010
Assignee:
Morpho Detection, Inc.
Inventors:
Joseph Bendahan, Walter Irving Garms, Mengqian Gu
Abstract: A method for determining the change in position of an object in an item of luggage using two X-ray images. The method includes allocating points to individual features in each X-ray image, and extracting the individual features to produce a set of extracted points for each X-ray image. The method includes searching for clusters in each set of extracted points. For each X-ray image a valuation function that displays different values when points of a cluster are close than when points of the cluster are not close is used to determine the proximity of each cluster. This permits analysis of the movement of the object to be performed by observing the proximities of the clusters.
Abstract: An X-ray diffraction imaging system is provided. The X-ray diffraction imaging system includes an X-ray source configured to emit an X-ray pencil beam and a scatter detector configured to receive scattered radiation having a scatter angle from the X-ray pencil beam. The scatter detector is located substantially in a plane and includes a plurality of detector strips. A first detector strip has a first width equal to a linear extent of the X-ray pencil beam measured at the plane in a direction parallel to the first width.
Abstract: A system and methods for characterizing an unknown substance is described. One of the methods include determining an effective atomic number of the unknown substance as a first function of a first gradient of a first line.
Abstract: Methods and devices for rapid diagnosis and monitoring a patient for disease or effectiveness of treatment in real time. In preferred embodiments, the methods and devices comprise contacting an array of sensors with a sample from a mammal suspected of having a disease to generate a sensor array profile, measuring a clinical diagnostic marker for the suspected disease, and then developing a diagnosis using the sensor array profile in combination with the clinical diagnostic marker.
Type:
Grant
Filed:
July 20, 2007
Date of Patent:
October 26, 2010
Assignee:
Smiths Detection Inc.
Inventors:
Timothy E. Burch, C. William Hanson, III, Erica R. Thaler