Abstract: A method and system for reconstructing and segmenting an image of the contents of a container. The method includes receiving actual scan data from a scan of the container, reconstructing the actual scan data to obtain a reconstructed image, and segmenting the reconstructed image to obtain a segmented image. The method also includes deriving simulated scan data corresponding to the segmented image, calculating an error term based on a difference between the simulated scan data and the actual scan data, and determining whether a criterion is satisfied. The method further includes using the error term to produce a modified reconstructed image and repeating the preceding steps with the modified reconstructed image substituted for the reconstructed image if the criterion is not satisfied, and outputting information from the segmented image if the criterion is satisfied.
Abstract: A method and system for producing images of at least one object of interest in a container. The method includes receiving three-dimensional volumetric scan data from a scan of the container, reconstructing a three-dimensional representation of the container from the three-dimensional volumetric scan data, and inspecting the three-dimensional representation to detect the at least one object of interest within the container. The method also includes re-projecting a two-dimensional image from one of the three-dimensional volumetric scan data and the three-dimensional representation, and identifying a first plurality of image elements in the two-dimensional image corresponding to a location of the at least one object of interest. The method further includes outputting the two-dimensional image with the first plurality of image elements highlighted.
Abstract: A detection system for identifying an unknown substance includes a detector assembly configured to receive a particulate or vapor and determine a substance contained within the collected vapor or particulate sample, and at least one heater element operatively coupled in flow communication with the detector assembly. The heater element is configured to attract an airborne vapor when the detection system is in a vapor mode, and desorb at least a portion of the attracted particulate when the detection system is in a particulate mode.
Type:
Grant
Filed:
November 21, 2008
Date of Patent:
April 24, 2012
Assignee:
Morpho Detection, Inc.
Inventors:
Hacene Boudries, Ralph Reda, Natalya O. Hall, Joseph Chiffy, Marcel Benz, Karl Goedecke
Abstract: A method for making a secondary collimator that includes at least one plate having a plurality of slits defined therein includes determining a gap thickness between plate positions of the secondary collimator based on at least one dimension of the at least one plate and fabricating a base plate from a base plate blank. The base plate includes at least two slots being spaced apart by the gap thickness. The at least one plate is inserted into a first slot of the at least two slots to form the secondary collimator.
Type:
Grant
Filed:
October 2, 2009
Date of Patent:
March 20, 2012
Assignee:
Morpho Detection, Inc.
Inventors:
Geoffrey Harding, Helmut Rudolf Otto Strecker, Peter Michael Edic
Abstract: A method and apparatus for providing assay information to a portable detection unit, by way of a remote server in communication with the portable detection unit or a consumable with stored information for use with the portable detection unit. Global Positioning System (GPS) information is provided to a portable detection unit having a GPS receiver, so that the unit can determine its current position, including altitude. Based on the determined position, assays and parameters, such as PCR melt temperatures, can be selected. Assays to be performed by the portable detection unit can be selected based on the results of a prior assay.
Abstract: A coded aperture includes a position sensitive detector configured to observe the location of emitted high energy radiation, and a mask disposed in front of the position sensitive detector, wherein the mask has a non-linear shape configured to define a perimeter around position sensitive detector, wherein the mask comprises a plurality of attenuating and transparent elements of a predetermined configuration, positioned such that the emitted radiation is detected by the position sensitive detector after passage through the mask.
Type:
Grant
Filed:
May 16, 2008
Date of Patent:
March 6, 2012
Assignee:
Morpho Detection, Inc.
Inventors:
Scott Stephen Zelakiewicz, Jeffrey Seymour Gordon
Abstract: A reconfigurable sample preparation device includes a rotary plunger device having a hollow body and a coupling device, provided above one end of the rotary plunger, and accommodating a sample. The device also includes at least one sealed reagent module. When the rotary plunger is rotated on the coupling device, a film of the reagent module is pierced, mixing the sample with a substance from the reagent module.
Abstract: An apparatus, system, and method are disclosed for determining a partial class membership of a data record in a class. The apparatus includes a record set acquisition module that receives a set of reference records having the same independent variables and belonging to a known class within a group of classes. An unknown-class record receiving module receives an unknown-class record having same independent variables as reference records. A class identification module creates a class vector for each reference record identifying whether the record is in a class. A weighting module calculates a set of unknown-class record weights for the unknown-class record. A classification module determines a partial class membership for the unknown-class record for each class in the group of classes using the set of unknown-class record weights. Each partial class membership identifies a probability that the unknown-class record belongs to a corresponding class in the group of classes.
Abstract: A method for performing materials analysis of an object using an X-ray system includes generating an X-ray beam using an X-ray source having an anode and acquiring a scatter spectrum from Compton scatter produced when the X-ray beam interacts with the object. The scatter spectrum is acquired using an energy resolving detector. A Compton profile is extracted from the scatter spectrum by processing the scatter spectrum using a control system of the X-ray system. The Compton profile includes peaks at characteristic lines of the anode. The method further includes identifying a characteristic of a material of the object using the Compton profile, and outputting an indication of the characteristic of the material.
Abstract: A method and system for identifying an object in an acquired image. The method includes detecting an object within the acquired image, and determining whether the detected object is a containment vessel. If the object is not a containment vessel, the method includes applying a first set of rules for classifying the object. If the object is a containment vessel, the method includes applying a second set of rules for classifying the object.
Abstract: A system and method for identifying an object based on its estimated mass. In one aspect, a method for estimating a mass of an object is provided. The method includes acquiring image data including a plurality of image elements, calculating a histogram based on the image data, calculating a computed tomography (CT) number of the object using an anisotropic erosion operator, and determining a perimeter of the object. The method also includes calculating an estimated mass of the object using the CT number and a first subset of image elements of the plurality of image elements, the first subset of image elements defined by the perimeter of the object, and outputting at least one of the estimated mass of the object and an image including the object.
Abstract: A method for scanning a stream of objects includes continuously acquiring raw data of the stream of objects using an X-ray system including a detector, determining a leading edge and a trailing edge of a first object of the stream of objects from the raw data acquired by the detector using a control system, processing acquired raw data of the first object based on the determined leading edge and the determined trailing edge using the control system, and reconstructing an image of the first object using at least the processed raw data. A system configured to perform the method is also disclosed.
Abstract: An imaging system includes a platform having mounted thereon an imaging device. The imaging device includes a first detector and a second detector. The imaging system includes a mask having a first pattern of apertures therein, the mask positioned on a first side of the first detector, an anti-mask having a second pattern of apertures therein, wherein the second pattern is derived from the first pattern, the anti-mask positioned on a first side of the second detector, and a computer configured to acquire a plurality of mask datasets and anti-mask datasets of a gamma source, add one of the mask datasets and subtract its respective anti-mask dataset to create a far-field dataset, adjust the far-field image dataset, reconstruct a near-field image of the source using the far-field dataset, and apply an expectation maximization (EM) algorithm to one of the far-field image dataset and the near-field image to enhance contrast.
Type:
Grant
Filed:
December 11, 2008
Date of Patent:
December 20, 2011
Assignee:
Morpho Detection, Inc.
Inventors:
Ralph Thomas Hoctor, Scott Stephen Zelakiewicz, Evren Asma
Abstract: A rotational antenna includes a stationary feed which is disposed in a substantially vertical orientation. A parabolic dish is rotationally mounted about the stationary feed in a state of being tipped with respect to the stationary, substantially vertically oriented feed. The rotational parabolic antenna may alternatively be provided with a rotating radio frequency (RF) and acoustic feed. Other embodiments are disclosed.
Type:
Application
Filed:
May 26, 2010
Publication date:
December 1, 2011
Applicant:
DETECT, INC.
Inventors:
SCOTT ANDREW MCLAUGHLIN, MEGAN MAUREEN SLOAN, ELIAS MOISES LAU
Abstract: The present invention relates generally to detection of antibiotic-resistant bacteria in a sample. In particular, the invention provides methods, compositions and kits for detecting and analyzing methicillin-resistant Staphylococcus aureus (MRSA) and other methicillin-resistant bacteria in a sample.
Abstract: Systems and methods for detection of human fat metabolism byproducts and analysis of the detection for optimizing dietary results. The present invention includes a compact opto-electronic based sensor to significantly increase (factor of 20 or more) the accuracy and minimal detection limits for a standard ketone test strip.
Abstract: The present invention relates generally to detection of antibiotic-resistant bacteria in a sample. In particular, the invention provides methods, compositions and kits for detecting and analyzing methicillin-resistant Staphylococcus aureus (MRSA) and other methicillin-resistant bacteria in a sample.
Abstract: Methods, computer-readable mediums, and systems are provided. In one embodiment, a method detects at least one faulty X-ray detector signal and adjusts a conveyor speed and/or a gantry speed in accordance with the detection to increase information for image reconstruction. In another embodiment, a method detects a high volume time. Upon detection of the high volume time conveyor speed and gantry speed is increased during the high volume time. After expiration of the high volume time, the conveyor speed and gantry speed is reduced. In yet other embodiments, the computer-readable mediums and systems are also provided which perform similar features recited by the above methods.
Abstract: A method for scanning a stream of objects includes continuously acquiring raw data of the stream of objects using an X-ray system, that includes a detector. The raw data of the stream of objects is rebinned into at least one two-dimensional sinogram. A leading edge and a trailing edge of a first object of the stream of objects is determined from the at least one two-dimensional sinogram and a three-dimensional image of the first object is reconstructed using the at least one two-dimensional sinogram.
Abstract: A detection system and method having at least one detection unit, and a control center unit. The detection unit includes at least one sensor configured to generate sensor data correlated to sensed conditions, a locator for actively determining location data corresponding to the location of the detection unit, and a communicator configured to communicate the sensor data and location data. The control center includes a receiver for receiving the sensor data and the location data, together with a control processor which is configured to determine a threat level correlated to the sensor data.
Type:
Grant
Filed:
July 11, 2008
Date of Patent:
September 27, 2011
Assignees:
Mobile Detect Inc.
Inventors:
Robert Cassin McFadden, Shannon Dinesh Lal, Christopher James McInnis Clarke