Abstract: An antibody prodrug capable of being selectively activated in a central nervous system (CNS) by protease KLK6 includes an antibody for treating a disease or disorder in the CNS; a KLK6 cleavable peptide fused to an N-terminus of a heavy chain and/or a light chain of the antibody; and a blocker fused to an N-terminus of the KLK6 cleavable peptide. The disease or disorder is a cancer, inflammatory disease, autoimmune disease, infectious disease, or neuron degeneration disease.
Abstract: A host cell for protein expression having a lower expression level of a gene, as compared to a wild-type cell, wherein the gene is selected from HDAC8, Dab2, Caspase3, Sys1, Ergic3, Grasp, Trim 23, or a combination thereof. The host cells are CHO cells. The lower expression level of the gene results from RNA interference, which may be achieved by transfecting a vector that contains an shRNA targeting the gene.
Abstract: An immunoconjugate includes an anti-Globo H antibody, or a binding fragment thereof, and a therapeutic agent or a label, having the formula: Ab?(L?D)m, wherein Ab is the anti-Globo H antibody or the binding fragment thereof, L is a linker or a direct bond, D is the therapeutic agent or the label, and m is an integer from 1 to 8. The antibody may be a monoclonal antibody, which may be a humanized antibody. A method for treating a cancer includes administering to a subject in need of such treatment a pharmaceutically effective amount of an immunoconjugate containing an antibody against Globo H, or a binding fragment thereof, and a therapeutic agent covalently conjugated with the antibody.
Abstract: The present invention provides a process for the preparation of a Crassocephalum crepidioides extract, and the extract prepared thereby. The present invention further relates to a pharmaceutical composition/combination comprising the Crassocephalum crepidioides extract. The use of the extract and the composition/combination comprising the extract in the prevention or treatment of cancer is also provided.
Type:
Application
Filed:
December 31, 2015
Publication date:
February 28, 2019
Applicants:
DEVELOPMENT CENTER FOR BIOTECHNOLOGY, DCB-USA LLC
Abstract: A bispecific anti-Globo H antibody includes an anti-Globo H antibody that binds specifically to Globo H; and a T-cell targeting domain fused to a CH3 domain of a heavy chain of the anti-Globo H antibody, wherein the T-cell targeting domain binds specifically to an antigen on T-cells; and wherein the anti-Globo H antibody comprises mutations at an effector binding site such that the bispecific anti-Globo H antibody has a diminished effector function. The T-cell targeting domain is a ScFv or Fab from an anti-CD3 antibody.
Abstract: An asymmetric heterodimeric antibody includes a knob structure formed in a CH3 domain of a first heavy chain; a hole structure formed in a CH3 domain of a second heavy chain, wherein the hole structure is configured to accommodate the knob structure so that a heterodimeric antibody is formed; and a T-cell targeting domain fused to the CH3 domain of the first heavy chain or the second heavy chain, wherein the T-cell targeting domain binds specifically to an antigen on the T-cell. The T-cell targeting domain is a ScFv or Fab derived from an anti-CD3 antibody. The asymmetric heterodimeric antibody may have L234A and L235A mutations or L235A and G237A such that its effector binding is compromised.
Abstract: The present invention relates to an antibody or antigen-binding fragment thereof that bind human vascular endothelial growth factor receptor 2 (VEGFR-2). The present invention also relates to a method for inhibiting VEGFR-2-mediated signaling in a subject in need, a method for treating diseases and/or disorders caused by or related to VEGFR-2 activity and/or signaling in a subject afflicted with the diseases and disorders, a method for treating tumor in a subject afflicted with the tumor, a method for inhibiting cell proliferation of endothelial cells in a subject in need, and a method for detecting human vascular endothelial growth factor receptor in a sample.
Abstract: A compound for treating a protein kinase-related disease or disorder having a structure of formula (I) wherein L is NR8 or O; R1, R2, R3, R4, R5, R6 and R7 are defined herein. Compounds of formula (I) are useful for inhibition of protein kinases.
Type:
Application
Filed:
June 15, 2015
Publication date:
July 26, 2018
Applicants:
Development Center for Biotechnology, DCB-USA LLC
Abstract: An anti-human T-cell immunoglobulin domain and mucin domain 3 (TIM-3) antibody, can bind the peptides, comprising the amino-acid sequence RKGDVSL (SEQ ID NO: 9) and/or EKFNLKL (SEQ ID NO: 10) of human TIM-3 protein. The antibody can regulate immune cell activity. The antibody or binding fragment thereof is useful in diagnosis, prognosis, and treatment of cancers that have been reported to express cell-surface TIM-3 such as lung, liver, esophageal cancer and solid tumors.
Abstract: The present invention provides a composition for preventing or treating immune allergic airway disease, and uses of the composition in preparing drugs, wherein the composition comprises an effective amount of S-allyl-L-cysteine and a pharmaceutically acceptable carrier.
Abstract: The present invention provides a process for the preparation of Plectranthus amboinicus extracts using a stirring separation method. The present invention also relates to a pharmaceutical composition comprising the Plectranthus amboinicus crude extract and/or extract for treating skin disorders, including enhancing the healing of wounds, especially in diabetic patients.
Abstract: A method for specific linkage to a glycoprotein includes obtaining a glycoprotein having a monoglycan or diglycan attached thereto; producing a reactive functional group on a sugar unit on the glycoprotein; and coupling a linker or a payload to the reactive functional group on the glycoprotein.
Type:
Application
Filed:
December 31, 2015
Publication date:
December 28, 2017
Applicants:
Development Center for Biotechnology, DCB-USA LLC
Abstract: The present invention relates to pyrimidine compounds of formula (I): which are useful in treating mTOR kinase- or PI3K kinase-related diseases.
Abstract: A method for treating an inflammatory disease or an immune disorder includes administering to a subject in need of such treatment an antagonist against ENO1. The antagonist binds ENO1 and inhibits ENO1 plasminogen receptor activity. The antagonist may be an anti-human ENO1 antibody, or an scFv, Fab, or F(ab)2 fragment thereof, that specifically binds to human ENO1 (GenBank: AAH50642.1) for the treatment of an inflammatory disease or an immune disorder, which may be multiple sclerosis, rheumatoid arthritis, Crohn's disease, ulcerative colitis, systemic Lupus erythematosus, chronic obstructive pulmonary disease (COPD), asthma, allergy, psoriasis, type 1 diabetes mellitus, artherosclerosis or osteoporosis.
Type:
Grant
Filed:
December 22, 2014
Date of Patent:
September 5, 2017
Assignees:
Development Center for Biotechnology, National Health Research Institutes
Abstract: The present invention relates to an antibody or antigen-binding fragment thereof that bind human vascular endothelial growth factor receptor 2 (VEGFR-2). The present invention also relates to a method for inhibiting VEGFR-2-mediated signaling in a subject in need, a method for treating diseases and/or disorders caused by or related to VEGFR-2 activity and/or signaling in a subject afflicted with the diseases and disorders, a method for treating tumor in a subject afflicted with the tumor, a method for inhibiting cell proliferation of endothelial cells in a subject in need, and a method for detecting human vascular endothelial growth factor receptor in a sample.
Abstract: A humanized antibody, or a binding fragment thereof, wherein the humanized antibody binds human ENO1 (GenBank: AAH50642.1), wherein the antibody comprises a light chain variable region (VL) domain comprising a CDR1 having the amino acid sequence LCDR1 (RASENIYSYLT; SEQ ID NO: 6) and a CDR2 having the amino acid sequence LCDR2 (NAKTLPE; SEQ ID NO: 7) and a CDR3 having the amino acid sequence LCDR3 (QHHYGTPYT; SEQ ID NO: 8) and an antibody heavy chain variable region (VH) domain comprising a CDR1 having the amino acid sequence HCDR1 (GYTFTSCVMN; SEQ ID NO: 3), a CDR2 having the amino acid sequence HCDR2 (YINPYNDGTKYNEKFKG; SEQ ID NO: 4) and a CDR3 having the amino acid sequence HCDR3 (EGFYYGNFDN; SEQ ID NO: 5), wherein framework regions in the light chain variable region (VL) domain and the heavy chain variable region (VH) domain comprise amino acid sequences from a human immunoglobulin.
Type:
Grant
Filed:
December 31, 2014
Date of Patent:
December 27, 2016
Assignees:
Development Center for Biotechnology, DCB-USA LLC, National Health Research Institutes
Abstract: An extract of Graptopetalum paraguayense prepared by a method that includes: extracting a Graptopetalum paraguayense (GP) starting material with an alcoholic solvent to produce an alcoholic extract and a residue; separating the residue from the alcoholic extract; extracting the residue with an aqueous dimethyl sulfoxide (DMSO) solvent to produce a DMSO extract; subjecting the DMSO extract to ultrafiltration using a filter having a selected molecular weight cutoff; drying a fraction retained by the filter to obtain the extract of Graptopetalum paraguayense. Uses of an extract of Graptopetalum paraguayense for the treatment or prevention of liver fibrosis, hepatic cirrhosis, liver cancer, recurrence of liver fibrosis after surgery, or recurrence of liver cancer after surgery.
Abstract: A method for treating cancer includes administering to a subject in need thereof an antibody against a transmembrane and coiled-coil domains protein 3 (TMCC3), wherein the antibody binds to an epitope in an extracellular domain of TMCC3. The antibody binds to an epitope in an intercoil domain of TMCC3. A method of diagnosing or assessing a cancer condition includes assessing a level of expression or activity of a transmembrane and coiled-coil domains protein 3 (TMCC3) in a sample, wherein an increase in the level of expression of activity of TMCC3 as compared to a standard indicates the presence of cancer stem cells in the sample.
Type:
Grant
Filed:
March 24, 2014
Date of Patent:
September 20, 2016
Assignees:
Development Center for Biotechnology, Academia Sinica, Chang Gung Memorial Hospital
Inventors:
Alice L. Yu, John Yu, Ya-Hui Wang, Chuan-Lung Hsu, Yi-Chang Chen, Ying-Yung Lok
Abstract: An anti-granulysin antibody, or an scFv or Fab fragment thereof, capable of binding to an epitope region from R64 to R113 of granulysin and capable of neutralizing an activity of granulysin. The antibody may contain a sequence selected from the sequences of SEQ ID NO:82 to SEQ ID NO:195, or the antibody may contain a sequence selected from the sequences of SEQ ID NO:39 to SEQ ID NO:76. The antibody may be a monoclonal antibody. A method for treating or preventing an unwanted immune response disorder includes administering to a subject in need thereof an effective amount of an anti-granulysin antibody capable of neutralizing the activity of granulysin. The unwanted immune response disorder may be SJS, TEN, or GVHD.
Type:
Grant
Filed:
December 31, 2013
Date of Patent:
August 30, 2016
Assignees:
Development Center for Biotechnology, DCB-USA LLC, Academia Sinica
Abstract: The present invention discloses an anti-human alpha-enolase (ENO1) antibody, which can bind the peptides, comprising amino-acid sequence 296FD Q D D W G A W Q K F TA309 (SEQ ID: #9) and/or 326K R I A K A V N EK S336 (SEQ ID: #10) of human ENO1 protein (GenBank: AAH50642.1), has a favorable binding activity (the binding affinity is around 2.19×10-10 mol/L) and a remarkable capability to inhibit the cell invasion and tumor metastasis of a varied of tumors. The recognized peptides and antibody of the invention are useful for diagnosis, prognosis, and treatment of cancers that have been reported to express cell-surface ENO1 such as including lung, breast, pancreas, liver, colorectal, prostate cancers and solid tumors.
Type:
Grant
Filed:
December 27, 2013
Date of Patent:
July 5, 2016
Assignees:
Development Center for Biotechnology, National Health Research Institutes