Patents Assigned to DexCom, Inc.
  • Patent number: 9055901
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: June 16, 2015
    Assignee: DexCom, Inc.
    Inventors: Mark Brister, Daniel Kline, Steve Masterson, Sean Saint
  • Patent number: 9050413
    Abstract: Systems and methods for integrating a continuous glucose sensor, including a receiver, a medicament delivery device, and optionally a single point glucose monitor are provided. Manual integrations provide for a physical association between the devices wherein a user (for example, patient or doctor) manually selects the amount, type, and/or time of delivery. Semi-automated integration of the devices includes integrations wherein an operable connection between the integrated components aids the user (for example, patient or doctor) in selecting, inputting, calculating, or validating the amount, type, or time of medicament delivery of glucose values, for example, by transmitting data to another component and thereby reducing the amount of user input required. Automated integration between the devices includes integrations wherein an operable connection between the integrated components provides for full control of the system without required user interaction.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: June 9, 2015
    Assignee: DexCom, Inc.
    Inventors: James H. Brauker, Mark A. Tapsak, Sean T. Saint, Apurv Ullas Kamath, Paul V. Neale, Peter C. Simpson, Michael Robert Mensinger, Dubravka Markovic
  • Patent number: 9044199
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Grant
    Filed: March 10, 2005
    Date of Patent: June 2, 2015
    Assignee: DexCom, Inc.
    Inventors: Mark Brister, Peter C. Simpson, Vance Swanson, Apurv Ullas Kamath, Sean Saint, James R. Petisce, Kum Ming Woo
  • Patent number: 9041730
    Abstract: This disclosure provides systems, methods and apparatus for processing, transmitting and displaying data received from an analyte sensor, such as a glucose sensor. The system may include a display device with at least one input device. In response to movement of or along the input device, the display device may change a glucose data output parameter and update an output of the display device using the changed output parameter.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: May 26, 2015
    Assignee: DexCom, Inc.
    Inventors: Eric Johnson, Michael Robert Mensinger, Peter C. Simpson, Thomas Hall, Hari Hampapuram, Kostyantyn Snisarenko, Eli Reihman, Holly Chico, Kassandra Constantine
  • Patent number: 9037210
    Abstract: Systems and methods of use for continuous analyte measurement of a host's vascular system are provided. In some embodiments, a continuous glucose measurement system includes a vascular access device, a sensor and sensor electronics, the system being configured for insertion into communication with a host's circulatory system.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: May 19, 2015
    Assignee: DEXCOM, INC.
    Inventors: Peter C. Simpson, Mark Brister, Jacob S. Leach
  • Patent number: 9028410
    Abstract: Systems and methods for continuous measurement of an analyte in a host are provided. The system generally includes a continuous analyte sensor configured to continuously measure a concentration of analyte in a host and a sensor electronics module physically connected to the continuous analyte sensor during sensor use, wherein the sensor electronics module is further configured to directly wirelessly communicate sensor information to one or more display devices. Establishment of communication between devices can involve using a unique identifier associated with the sensor electronics module to authenticate communication. Times tracked at the sensor electronics module and the display module can be at different resolutions, and the different resolutions can be translated to facilitate communication. In addition, the frequency of establishing communication channels between the sensor electronics module and the display devices can vary depending upon whether reference calibration information is being updated.
    Type: Grant
    Filed: April 6, 2012
    Date of Patent: May 12, 2015
    Assignee: DexCom, Inc.
    Inventors: Kenneth San Vicente, Indrawati Gauba, Siddharth Waichal, Andrew Walker
  • Patent number: 9020572
    Abstract: Systems and methods for continuous measurement of an analyte in a host are provided. The system generally includes a continuous analyte sensor configured to continuously measure a concentration of analyte in a host and a sensor electronics module physically connected to the continuous analyte sensor during sensor use, wherein the sensor electronics module is further configured to directly wirelessly communicate displayable sensor information to a plurality of different types of display devices.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: April 28, 2015
    Assignee: DexCom, Inc.
    Inventors: Michael Robert Mensinger, John Michael Dobbles, Apurv U. Kamath, Beat Stadelmann, Deborah M. Ruppert, Nasser Salamati, Richard C. Yang
  • Patent number: 9002390
    Abstract: Systems and methods for continuous measurement of an analyte in a host are provided. The system generally includes a continuous analyte sensor configured to continuously measure a concentration of analyte in a host and a sensor electronics module physically connected to the continuous analyte sensor during sensor use, wherein the sensor electronics module is further configured to directly wirelessly communicate sensor information to one or more display devices. Establishment of communication between devices can involve using a unique identifier associated with the sensor electronics module to authenticate communication. Times tracked at the sensor electronics module and the display module can be at different resolutions, and the different resolutions can be translated to facilitate communication. In addition, the frequency of establishing communication channels between the sensor electronics module and the display devices can vary depending upon whether reference calibration information is being updated.
    Type: Grant
    Filed: April 6, 2012
    Date of Patent: April 7, 2015
    Assignee: DexCom, Inc.
    Inventors: Kenneth San Vicente, Indrawati Gauba, Siddharth Waichal, Andrew Walker
  • Patent number: 8989833
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Grant
    Filed: March 10, 2005
    Date of Patent: March 24, 2015
    Assignee: DexCom, Inc.
    Inventors: James H. Brauker, Victoria Carr-Brendel, Mark Brister
  • Patent number: 8986209
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: March 24, 2015
    Assignee: DexCom, Inc.
    Inventors: James H. Brauker, Apurv Ullas Kamath, Paul V. Goode, Mark Brister
  • Patent number: 8968198
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: March 3, 2015
    Assignee: DexCom, Inc.
    Inventors: James H. Brauker, Apurv Ullas Kamath
  • Patent number: 8954128
    Abstract: Devices and methods are described for providing continuous measurement of an analyte concentration. In some embodiments, the device has a sensing mechanism and a sensing membrane that includes at least one surface-active group-containing polymer and that is located over the sensing mechanism. The sensing membrane may have a bioprotective layer configured to substantially block the effect and/or influence of non-constant noise-causing species.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: February 10, 2015
    Assignee: DexCom, Inc.
    Inventors: Robert J. Boock, Monica A. Rixman, Huashi Zhang, Michael J. Estes, Kristina Lawrence
  • Patent number: 8926585
    Abstract: Systems and methods for integrating a continuous glucose sensor, including a receiver, a medicament delivery device, and optionally a single point glucose monitor are provided. Manual integrations provide for a physical association between the devices wherein a user (for example, patient or doctor) manually selects the amount, type, and/or time of delivery. Semi-automated integration of the devices includes integrations wherein an operable connection between the integrated components aids the user (for example, patient or doctor) in selecting, inputting, calculating, or validating the amount, type, or time of medicament delivery of glucose values, for example, by transmitting data to another component and thereby reducing the amount of user input required. Automated integration between the devices includes integrations wherein an operable connection between the integrated components provides for full control of the system without required user interaction.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: January 6, 2015
    Assignee: DexCom, Inc.
    Inventors: James H. Brauker, Mark A. Tapsak, Sean T. Saint, Apurv U. Kamath, Paul V. Neale, Peter C. Simpson, Michael Robert Mensinger, Dubravka Markovic
  • Patent number: 8929968
    Abstract: Disclosed herein are systems and methods for a continuous analyte sensor, such as a continuous glucose sensor. One such system utilizes first and second working electrodes to measure analyte or non-analyte related signal, both of which electrode include an interference domain.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: January 6, 2015
    Assignee: DexCom, Inc.
    Inventors: Mark C. Brister, James R. Petisce, Peter C. Simpson
  • Patent number: 8920401
    Abstract: Systems and methods for integrating a continuous glucose sensor, including a receiver, a medicament delivery device, and optionally a single point glucose monitor are provided. Manual integrations provide for a physical association between the devices wherein a user (for example, patient or doctor) manually selects the amount, type, and/or time of delivery. Semi-automated integration of the devices includes integrations wherein an operable connection between the integrated components aids the user (for example, patient or doctor) in selecting, inputting, calculating, or validating the amount, type, or time of medicament delivery of glucose values, for example, by transmitting data to another component and thereby reducing the amount of user input required. Automated integration between the devices includes integrations wherein an operable connection between the integrated components provides for full control of the system without required user interaction.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: December 30, 2014
    Assignee: DexCom, Inc.
    Inventors: James H. Brauker, Mark A. Tapsak, Sean T. Saint, Apurv U. Kamath, Paul V. Neale, Peter C. Simpson, Michael Robert Mensinger, Dubravka Markovic
  • Patent number: 8923947
    Abstract: Devices and methods for determining analyte levels are described. The devices and methods allow for the implantation of analyte-monitoring devices, such as glucose monitoring devices that result in the delivery of a dependable flow of blood to deliver sample to the implanted device. The devices include unique architectural arrangement in the sensor region that allows accurate data to be obtained over long periods of time.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: December 30, 2014
    Assignee: DexCom, Inc.
    Inventors: Mark C. Shults, Stuart J. Updike, Rathbun K. Rhodes, Barbara J. Gilligan, Mark A. Tapsak
  • Patent number: 8915849
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: December 23, 2014
    Assignee: DexCom, Inc.
    Inventors: James H. Brauker, Apurv Ullas Kamath, Paul V. Goode
  • Patent number: 8911367
    Abstract: Systems and methods of use for continuous analyte measurement of a host's vascular system are provided. In some embodiments, a continuous glucose measurement system includes a vascular access device, a sensor and sensor electronics, the system being configured for insertion into communication with a host's circulatory system.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: December 16, 2014
    Assignee: Dexcom, Inc.
    Inventors: Mark Brister, Mark Shults, Sean Saint, James R. Petisce, David K. Wong, Kum Ming Woo
  • Patent number: 8911369
    Abstract: Disclosed herein are systems and methods for a continuous analyte sensor, such as a continuous glucose sensor. One such system utilizes first and second working electrodes to measure additional analyte or non-analyte related signal. Such measurements may provide a background and/or sensitivity measurement(s) for use in processing sensor data and may be used to trigger events such as digital filtering of data or suspending display of data.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: December 16, 2014
    Assignee: Dexcom, Inc.
    Inventors: Mark Brister, James R. Petisce, Peter Simpson
  • Patent number: 8909314
    Abstract: The present invention relates generally to systems and methods for increasing oxygen availability to implantable devices. The preferred embodiments provide a membrane system configured to provide protection of the device from the biological environment and/or a catalyst for enabling an enzymatic reaction, wherein the membrane system includes a polymer formed from a high oxygen soluble material. The high oxygen soluble polymer material is disposed adjacent to an oxygen-utilizing source on the implantable device so as to dynamically retain high oxygen availability to the oxygen-utilizing source during oxygen deficits. Membrane systems of the preferred embodiments are useful for implantable devices with oxygen-utilizing sources and/or that function in low oxygen environments, such as enzyme-based electrochemical sensors and cell transplantation devices.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: December 9, 2014
    Assignee: DexCom, Inc.
    Inventors: James R. Petisce, Mark A. Tapsak, Peter C. Simpson, Victoria E. Carr-Brendel, James H. Brauker