Patents Assigned to DexCom, Inc.
  • Publication number: 20130255570
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Application
    Filed: May 13, 2013
    Publication date: October 3, 2013
    Applicant: DexCom, Inc.
    Inventors: Mark Brister, James R. Petisce, Sean Saint, Kum Ming Woo, Victor Ha, John Nolting, Peter C. Simpson, James Brauker
  • Patent number: 8548553
    Abstract: Systems and methods for processing sensor analyte data, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. During initial calibration, the analyte sensor data is evaluated over a period of time to determine stability of the sensor. The sensor may be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. The calibration may be updated after evaluating the calibration set for best calibration based on inclusion criteria with newly received reference analyte data. Fail-safe mechanisms are provided based on clinical acceptability of reference and analyte data and quality of sensor calibration. Algorithms provide for optimized prospective and retrospective analysis of estimated blood analyte data from an analyte sensor.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: October 1, 2013
    Assignee: DexCom, Inc.
    Inventors: Apurv Ullas Kamath, Paul V. Goode, Jr., James H. Brauker, James Patrick Thrower
  • Patent number: 8548551
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: October 1, 2013
    Assignee: DexCom, Inc.
    Inventors: Apurv Ullas Kamath, James Brauker, J. Michael Dobbles
  • Publication number: 20130253418
    Abstract: Systems and methods for processing sensor data are provided. In some embodiments, systems and methods are provided for calibration of a continuous analyte sensor. In some embodiments, systems and methods are provided for classification of a level of noise on a sensor signal. In some embodiments, systems and methods are provided for determining a rate of change for analyte concentration based on a continuous sensor signal. In some embodiments, systems and methods for alerting or alarming a patient based on prediction of glucose concentration are provided.
    Type: Application
    Filed: May 22, 2013
    Publication date: September 26, 2013
    Applicant: DexCom, Inc.
    Inventors: Apurv Ullas Kamath, Michael Robert Mensinger, Ying Li, Aarthi Mahalingam, J. Michael Dobbles
  • Patent number: 8543184
    Abstract: Membrane systems incorporating silicone polymers are described for use in implantable analyte sensors. Some layers of the membrane system may comprise a blend of a silicone polymer with a hydrophilic polymer, for example, a triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) polymer. Such polymeric blends provide for both high oxygen solubility and aqueous analyte solubility.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: September 24, 2013
    Assignee: DexCom, Inc.
    Inventors: Robert Boock, Monica Rixman
  • Publication number: 20130245401
    Abstract: Systems and methods for applying time-dependent algorithmic compensation functions to data output from a continuous analyte sensor. Some embodiments determine a time since sensor implantation and/or whether a newly initialized sensor has been used previously.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 19, 2013
    Applicant: DEXCOM, INC.
    Inventors: Michael J. Estes, Stephen J. Vanslyke, Apurv Ullas Kamath, Thomas A. Peyser, Lucas Bohnett, Aarthi Mahalingam, Arturo Garcia, Peter C. Simpson, Anna Leigh Rack-Gomer, Sebastian Sebastian Bohm
  • Publication number: 20130245412
    Abstract: Systems and methods of use for continuous analyte measurement of a host's vascular system are provided. In some embodiments, a continuous glucose measurement system includes an electrochemical sensor incorporating a silver/silver chloride reference electrode, wherein a capacity of the reference electrode is controlled.
    Type: Application
    Filed: March 4, 2013
    Publication date: September 19, 2013
    Applicant: DEXCOM, INC.
    Inventors: Daiting Rong, Sebastian Bohm, Matthew D. Wightlin
  • Publication number: 20130245981
    Abstract: Systems and methods for applying time-dependent algorithmic compensation functions to data output from a continuous analyte sensor. Some embodiments determine a time since sensor implantation and/or whether a newly initialized sensor has been used previously.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 19, 2013
    Applicant: DexCom, Inc.
    Inventors: Michael J. Estes, Stephen J. Vanslyke, Apurv Ullas Kamath, Thomas A. Peyser, Lucas Bohnett, Aarthi Mahalingam, Arturo Garcia, Peter C. Simpson, Anna Leigh Rack-Gomer, Sebastian Bohm
  • Publication number: 20130237786
    Abstract: Systems and methods for processing sensor analyte data, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. During initial calibration, the analyte sensor data is evaluated over a period of time to determine stability of the sensor. The sensor may be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. The calibration may be updated after evaluating the calibration set for best calibration based on inclusion criteria with newly received reference analyte data. Fail-safe mechanisms are provided based on clinical acceptability of reference and analyte data and quality of sensor calibration. Algorithms provide for optimized prospective and retrospective analysis of estimated blood analyte data from an analyte sensor.
    Type: Application
    Filed: April 23, 2013
    Publication date: September 12, 2013
    Applicant: DexCom, Inc.
    Inventors: Paul V. Goode, JR., James H. Brauker, Apurv Ullas Kamath, Victoria E. Carr-Brendel
  • Patent number: 8532730
    Abstract: Systems and methods of use for continuous analyte measurement of a host's vascular system are provided. In some embodiments, a continuous glucose measurement system includes a vascular access device, a sensor and sensor electronics, the system being configured for insertion into a host's peripheral vein or artery.
    Type: Grant
    Filed: October 4, 2006
    Date of Patent: September 10, 2013
    Assignee: Dexcom, Inc.
    Inventors: Mark Brister, Peter Simpson
  • Publication number: 20130231542
    Abstract: Disclosed herein are systems and methods for a continuous analyte sensor, such as a continuous glucose sensor. One such system utilizes first and second working electrodes to measure additional analyte or non-analyte related signal. Such measurements may provide a background and/or sensitivity measurement(s) for use in processing sensor data and may be used to trigger events such as digital filtering of data or suspending display of data.
    Type: Application
    Filed: April 15, 2013
    Publication date: September 5, 2013
    Applicant: DexCom, Inc.
    Inventors: Peter C. Simpson, Mark Brister, Matthew Wightlin, Jack Pryor
  • Patent number: 8527026
    Abstract: Devices and methods for determining analyte levels are described. The devices and methods allow for the implantation of analyte-monitoring devices, such as glucose monitoring devices that result in the delivery of a dependable flow of blood to deliver sample to the implanted device. The devices include unique architectural arrangement in the sensor region that allows accurate data to be obtained over long periods of time.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: September 3, 2013
    Assignee: DexCom, Inc.
    Inventors: Mark C. Shults, Stuart J. Updike, Rathbun K. Rhodes, Barbara J. Gilligan, Mark A. Tapsak
  • Patent number: 8527025
    Abstract: Devices and methods for determining analyte levels are described. The devices and methods allow for the implantation of analyte-monitoring devices, such as glucose monitoring devices, that result in the delivery of a dependable flow of blood to deliver sample to the implanted device. The devices comprise a unique microarchitectural arrangement in the sensor region that allows accurate data to be obtained over long periods of time.
    Type: Grant
    Filed: November 22, 1999
    Date of Patent: September 3, 2013
    Assignee: DexCom, Inc.
    Inventors: Mark C. Shults, Stuart J. Updike, Rathbun K. Rhodes
  • Patent number: 8515516
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Grant
    Filed: March 10, 2005
    Date of Patent: August 20, 2013
    Assignee: DexCom, Inc.
    Inventors: Apurv Ullas Kamath, James Brauker, J. Michael Dobbles
  • Patent number: 8515519
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: August 20, 2013
    Assignee: DexCom, Inc.
    Inventors: Mark Brister, Paul V. Neale, James Patrick Thrower, Daniel S. Kline, Daniel Shawn Codd, Sean Saint, Steve Masterson
  • Patent number: 8509871
    Abstract: The present invention provides a sensor head for use in an implantable device that measures the concentration of an analyte in a biological fluid which includes: a non-conductive body; a working electrode, a reference electrode and a counter electrode, wherein the electrodes pass through the non-conductive body forming an electrochemically reactive surface at one location on the body and forming an electronic connection at another location on the body, further wherein the electrochemically reactive surface of the counter electrode is greater than the surface area of the working electrode; and a multi-region membrane affixed to the nonconductive body and covering the working electrode, reference electrode and counter electrode. In addition, the present invention provides an implantable device including at least one of the sensor heads of the invention and methods of monitoring glucose levels in a host utilizing the implantable device of the invention.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: August 13, 2013
    Assignee: DexCom, Inc.
    Inventors: Rathbun K. Rhodes, Mark A. Tapsak, James H. Brauker, Mark C. Shults
  • Patent number: 8491474
    Abstract: Systems and methods for minimizing or eliminating transient non-glucose related signal noise due to non-glucose rate limiting phenomenon such as ischemia, pH changes, temperatures changes, and the like. The system monitors a data stream from a glucose sensor and detects signal artifacts that have higher amplitude than electronic or diffusion-related system noise. The system replaces some or the entire data stream continually or intermittently including signal estimation methods that particularly address transient signal artifacts. The system is also capable of detecting the severity of the signal artifacts and selectively applying one or more signal estimation algorithm factors responsive to the severity of the signal artifacts, which includes selectively applying distinct sets of parameters to a signal estimation algorithm or selectively applying distinct signal estimation algorithms.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: July 23, 2013
    Assignee: DexCom, Inc.
    Inventors: Paul V. Goode, Jr., James H. Brauker, Apurv U. Kamath, James Patrick Thrower, Victoria Carr-Brendel
  • Patent number: 8483791
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: July 9, 2013
    Assignee: DexCom, Inc.
    Inventors: Mark Brister, Paul V. Neale, James H. Brauker
  • Patent number: 8483793
    Abstract: Disclosed herein are systems and methods for a continuous analyte sensor, such as a continuous glucose sensor. One such system utilizes first and second working electrodes to measure analyte or non-analyte related signal, both of which electrode include an interference domain.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: July 9, 2013
    Assignee: DexCom, Inc.
    Inventors: Peter C. Simpson, James H. Brauker, Paul V. Goode, Apurv U. Kamath, James R. Petisce, Kum Ming Woo, Melissa A. Nicholas, Robert J. Boock, Monica A. Rixman, John Burd, Rathburn K. Rhodes, Mark A. Tapsak
  • Patent number: 8475373
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: July 2, 2013
    Assignee: DexCom, Inc.
    Inventors: Mark Brister, Paul V. Neale, Sean Saint, James Patrick Thrower, Thomas F. McGee, Daniel Shawn Codd, David Michael Petersen, Daniel S. Kline