Patents Assigned to Dialogic (US) Inc.
  • Patent number: 9929590
    Abstract: Circuits and methods providing a electronic power supply applicable to any dual supply rail systems, which require a smooth and uninterrupted output supply and a replica power path and autonomous mode of operation from the system power supply are disclosed. In a preferred embodiment of the invention the power supply is applied to a real time clock. An Innovative Replica Power Path concept and circuit implementation ensures the smooth and uninterrupted transfer of power from one input source to the other. The circuit features a Latched Supply Comparator that guarantees the commutation to the Replica Power Path only happens after the voltage is settled. Zero power consumption from the back-up energy source is achieved in the presence of an alternative higher voltage source. The generated RTC supply voltage does not suffer from abrupt changes when the voltage level of the main system power source (battery or charger) is connected or disconnected.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: March 27, 2018
    Assignee: Dialog Semiconductor GmbH
    Inventors: Ludmil Nikolov, Carlos Calisto
  • Patent number: 9917510
    Abstract: A system and method of increasing the efficiency in multi-stage power converters by providing an open loop charge pump stage which reacts in part based on information from a closed loop multi-phase buck converter stage.
    Type: Grant
    Filed: July 21, 2016
    Date of Patent: March 13, 2018
    Assignee: DIALOG SEMICONDUCTOR (UK) LIMITED
    Inventors: Ershad Ahmed, Sorin Laurentiu Negru, Chi-Man Ng, Alin Gherghescu
  • Patent number: 9917519
    Abstract: A switching power converter is configured to control switching noise by implementing a plurality of pulse width modulation modes of operation. The peak current in each pulse width modulation mode of operation is controlled so that an output power for the switching power converter is continuous with regard to transitions between the pulse width modulation modes.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: March 13, 2018
    Assignee: DIALOG SEMICONDUCTOR INC.
    Inventors: John Shi, John Kesterson, Cong Zheng, Kai-Wen Chin
  • Patent number: 9912142
    Abstract: One embodiment of a disclosed cable protection device connected between the positive and negative wires of the cable that provides an efficient method of protection from overheating of the device due to changes in temperatures with minimal power dissipation. The cable protection device includes a temperature monitoring device that continuously senses the temperature of the cable and device to check for overheating. A controller connected to the temperature monitor sends out an alarm message and a control signal to either an actuator circuit or a crowbar function circuit. The actuator circuit can send out current pulses to the adapter indicating the adapter to lower its current limit, so that the device can still keep charging and is not over heated. The crowbar function circuit causes the adapter to turn off power to the cable in order to provide burning of the device or connector due to overheating.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: March 6, 2018
    Assignee: Dialog Semiconductor, Inc.
    Inventors: Athar Zaidi, Andrey B. Malinin
  • Patent number: 9906151
    Abstract: A switching power converter may include a power switch coupled to a primary winding of a transformer, and a primary controller configured to turn on and off the power switch, a synchronous rectifier switch coupled to a secondary winding of a transformer, and a synchronous rectifier controller configured to turn on and off the synchronous rectifier switch. The synchronous rectifier controller may monitor a voltage across the synchronous rectifier switch. The synchronous rectifier controller may detect a fault condition responsive to the voltage reaching a turn-off voltage threshold before a minimum on-time timer expires. The synchronous rectifier controller may detect a fault condition responsive to the synchronous rectifier switch being turned off at the same time, immediately after, or within a timing guardband after the minimum on-time timer expires. The synchronous rectifier controller may adaptively increase a minimum off-time period for the synchronous rectifier switch.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: February 27, 2018
    Assignee: DIALOG SEMICONDUCTOR INC.
    Inventors: Pengju Kong, Wenbo Liang
  • Patent number: 9907131
    Abstract: An arbitrary alignment is provided for a series of pulses controlling a switch that in turn controls a current in an LED. Each pulse is generated according to a target time responsive to a reference time in a corresponding cycle of a synchronization clock. Each pulse has a leading portion that precedes its target time and a trailing portion subsequent to its target time. The arbitrary alignment defines the relative size of the leading portion to the trailing portion such that these relative sizes are incrementally changed across successive ones of the pulses.
    Type: Grant
    Filed: June 6, 2017
    Date of Patent: February 27, 2018
    Assignee: DIALOG SEMICONDUCTOR INC.
    Inventors: Lingxin Kong, Nailong Wang, Ze Han
  • Patent number: 9887535
    Abstract: A power providing circuit which is configured to provide a current at an output voltage to a load at an output of the power providing circuit is described. The power providing circuit comprises a power transistor which is configured to draw the current from a supply voltage, wherein a resistance of the power transistor is controlled using a control voltage which is applied to a control port of the power transistor. Furthermore, the power providing circuit comprises short circuit protection circuitry which is configured to couple the control port of the power transistor with a first port of the power transistor to put the power transistor in an off-state, subject to a drop of the output voltage.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: February 6, 2018
    Assignee: Dialog Semiconductor (UK) Limited
    Inventors: Ambreesh Bhattad, Frank Kronmueller, Christian Meindl, Anthony Clowes
  • Patent number: 9887674
    Abstract: A multi-stage amplifier, comprising a first amplifier stage is presented. The output of the first amplifier stage is coupled to a first terminal of a capacitor having a controllable capacitance. The input of a second amplifier stage is coupled to the output of the first amplifier stage and the first terminal of the capacitor. The output of the second amplifier stage is coupled to a second terminal of the capacitor and an output of the multi-stage amplifier. The input of a current sensing circuit is coupled with the output of the multi-stage amplifier. A control signal generator is coupled between the output of the current sensing circuit and a control terminal of the capacitor. The control signal generator provides a control signal to the capacitor in order to control or vary the capacitance of the capacitor.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: February 6, 2018
    Assignee: Dialog Semiconductor (UK) Limited
    Inventors: Carlos Zamarreno Ramos, Ambreesh Bhattad, Frank Kronmueller
  • Patent number: 9887625
    Abstract: A circuit and method for providing an improved current monitoring circuit for a switching regulator. A circuit providing switching regulation with an improved current monitor, comprising a pulse width modulation (PWM) controller configured to provide P- and N-drive signals, an output stage connected to said PWM controller and configured to provide switching, comprising a high-side and low-side transistor, driven by said P- and N-drive signals, respectively, a sense circuit configured to provide output current sensing from the output stage during a sampling period when the N-drive signal is active, and a sampling timing generator configured to provide a an n-sampling signal, nsample, to the sense circuit, wherein a start of the n-sampling signal is delayed by a first delay after the sampling period and the n-sampling signal is ended prior to an end of the sampling period by a second delay.
    Type: Grant
    Filed: July 9, 2015
    Date of Patent: February 6, 2018
    Assignee: Dialog Semiconductor (UK) Limited
    Inventor: Seiichi Ozawa
  • Patent number: 9882563
    Abstract: The present disclosure relates to methods and circuits to lowering the signal range of switching or logic circuits below supply range. The circuits may have one or more stages. The supply levels can be set individually for each stage. This may realize amplifiers/attenuators, both digitally and analogically controlled, based on progression and/or modulation in the supply range from stage to stage. A chain of stages can provide the desired power gain by setting the supply progression according to the nature of the incoming signals. The signal levels are lowered by generic device networks comprising voltage sources providing voltages independent of currents flowing through. Decoupling the signal amplitude from DC biasing allows for the signal swing to be lower than threshold voltages of the active devices.
    Type: Grant
    Filed: March 29, 2013
    Date of Patent: January 30, 2018
    Assignee: Dialog Semiconductor B.V.
    Inventors: Michele Ancis, Rahul Todi
  • Patent number: 9880787
    Abstract: A patching system and a patching circuit provide a type of patching entry which can replace several sequential memory positions with hardcoded and dynamically configured assembly instructions, thus injecting a small piece of code. The operation of the injected code can be for any purpose, but as an example may be used to seamlessly redirect the execution flow of a processing unit.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: January 30, 2018
    Assignee: Dialog Semiconductor B.V.
    Inventor: Konstantinos Ninos
  • Patent number: 9880573
    Abstract: A low dropout (LDO) device with improved linear mode comprising an error amplifier, a programmable attenuation factor circuit coupled to said error amplifier, a feedback network whose input is electrically connected to said programmable attenuation factor circuit and whose output is electrically coupled to the negative input of said error amplifier, a high side (HS) pre-drive circuit whose input is a high impedance (HiZ) mode signal, a low side (LS) pre-drive circuit whose input is a low pull-down input mode signal, a high side (HS) output stage element electrically coupled to said high side (HS) pre-drive circuit, a low side (LS) output stage element electrically coupled to said low side (LS) pre-drive circuit, and a high side sense (HSENSE) output stage element whose gate is electrically coupled to said high side (HS) pre-drive circuit, and whose gate and source are electrically connected to the output of said error amplifier.
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: January 30, 2018
    Assignee: Dialog Semiconductor GmbH
    Inventors: Zakaria Mengad, Mykhaylo Teplechuk
  • Patent number: 9882477
    Abstract: A variable efficiency and response buck converter is achieved. The device includes a multi-phase switch, the coupled coils, the filter capacitor, and the load. The multi-phase switch includes the phase control inputs, the circuit common reference, at least two pairs of complementary switches with each switch containing one upper switch and one lower switch, at least two phase control outputs from the complementary switches. The coupled inductive coils are coupled to the phase control outputs to enable weak couplings and strong couplings. Based on the working mode, equivalently the coupled coils can provide strong mutual inductances and weak mutual inductances. The filter capacitors connected to the output of the coupled coils provide high efficiency output to the load.
    Type: Grant
    Filed: April 28, 2014
    Date of Patent: January 30, 2018
    Assignee: Dialog Semiconductor (UK) Limited
    Inventor: Mark Childs
  • Patent number: 9877367
    Abstract: An LED lamp comprises one or more LEDs and an LED driver receiving an input signal from a dimmer switch indicative of an amount of dimming for the LED lamp. The LED driver controls regulated current through the one or more LEDs based on the input signal such that an output light intensity of the one or more LEDs substantially corresponds to the amount of dimming for the LED lamp. A regulated output provides operating power for the LED driver. A controller regulates the regulated output to power the LED driver. The controller selects a power source for charging the regulated output from two or more power sources, and the regulated output is charged using the power source selected by the controller.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: January 23, 2018
    Assignee: Dialog Semiconductor Inc.
    Inventors: Chuanyang Wang, Chenglong Zhang, Nan Shi, Clarita C. Knoll, Guang Feng
  • Patent number: 9875260
    Abstract: Systems and methods of provisioning data storage and runtime configuration in telecommunications systems and devices. The systems and methods employ at least one decentralized revision control system as a data repository for storing data, such as configuration data, and at least one data provisioning component as an interface for accessing the configuration data stored in the data repository. By employing the decentralized revision control system in conjunction with the data provisioning component, the systems and methods can provide a data storage and runtime configuration provisioning framework that is data agnostic, application agnostic, and user agnostic, while further providing at least the capability of tracking and maintaining the version history of the configuration data.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: January 23, 2018
    Assignee: Dialogic Corporation
    Inventors: Romolo Raffo, Kamlakar N. Patil, Thien Nguyen
  • Patent number: 9871946
    Abstract: Forward error correction is implemented in a facsimile transmission using adaptive redundancy. The depth of redundancy can change based on a number of factors, including lost packet counts, transport type, facsimile modulation type, call history or facsimile engine state changes. Separate redundancy depths can be implemented for image and for control phases of the facsimile call. Redundancy depth can be increased or decreased during a facsimile call, and may be maintained at an increased level once encountered transmission impediments are overcome. Variable redundancy can be provided for specific portions of the call, such as temporarily increased redundancy during control phases. Adaptive redundancy may be implemented at one or more endpoints or nodes in a packet-switched communication network through which the facsimile call passes. The adaptive redundancy contributes to improving successful facsimile call completion in communication networks that may be prone to error losses.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: January 16, 2018
    Assignee: Dialogic Corporation
    Inventors: Allan Ashmore, Michael J. Rus
  • Patent number: 9864386
    Abstract: A regulator for providing a load current at a regulator output voltage to a load at an output of the regulator is described. The regulator has a differential input stage to provide a differential output voltage based on a reference voltage and based on the regulator output voltage. Furthermore, the regulator has an output driver to generate a control signal based on the differential output voltage. In addition, the regulator has a pass transistor to provide the load current in dependence of the control signal. The regulator also has clamping circuitry to sense an overvoltage indication which indicates that the pass transistor is being turned off. Furthermore, the clamping circuitry clamps the differential output voltage to a clamping voltage, if the overvoltage indication indicates that the pass transistor is being turned off.
    Type: Grant
    Filed: April 5, 2016
    Date of Patent: January 9, 2018
    Assignee: Dialog Semiconductor (UK) Limited
    Inventors: Hande Kurnaz, Ambreesh Bhattad, Frank Kronmueller
  • Patent number: 9866123
    Abstract: A power converter with a dynamic preload. The power converter includes a magnetic component coupled between an input and an output of the power converter. The output of the power converter has an output voltage for providing power to a load. A switch is adapted to control current through the magnetic component according to on and off times of the switch. A dynamic preload circuit is coupled to the output of the power converter. The dynamic preload has loading characteristics that are adjusted responsive to a signal indicative of an output voltage at the output of the power converter.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: January 9, 2018
    Assignee: Dialog Semiconductor Inc.
    Inventors: Jianming Yao, Yimin Chen, Dickson T. Wong, Yong Li
  • Patent number: 9863981
    Abstract: A circuit and a method for sensing a current flowing from a supply voltage into an electric load are presented. The current sensing circuit comprises a first circuit branch connected between the supply voltage and the electric load, a second circuit branch connected between the supply voltage and ground, and an equalization circuit for equalizing a first voltage drop across a first resistive element and a second voltage drop across a second resistive element and for generating an indication of a current flowing through the second circuit branch.
    Type: Grant
    Filed: August 23, 2016
    Date of Patent: January 9, 2018
    Assignee: Dialog Semiconductor (UK) Limited
    Inventor: Thomas Jackum
  • Patent number: 9857817
    Abstract: A voltage regulator is described. It includes an amplification stage to control a voltage level of a first gain node and of a second gain node in response to an input voltage, to activate a first and a second output stage, respectively. It further includes the first output stage to source a current at an output node of the voltage regulator from a first potential. The voltage regulator includes the second output stage to sink a current at the output node to a second potential. The voltage regulator includes a first operating point control circuit to set the voltage level of the first gain node such that a first maintenance current is sourced by the first output stage; and/or a second operating point control circuit to set the voltage level of the second gain node such that a second maintenance current is sunk by the second output stage.
    Type: Grant
    Filed: January 17, 2017
    Date of Patent: January 2, 2018
    Assignee: Dialog Semiconductor (UK) Limited
    Inventors: Frank Kronmueller, Ambreesh Bhattad