Patents Assigned to DIVERGENT TECHNOLOGIES, INC.
  • Patent number: 12269093
    Abstract: Apparatus and methods for removing and/or destroying support structures associated with objects fabricated using additive manufacturing techniques are presented herein. Structural supports may be used during an additive manufacturing process to prevent deformation of a build piece (e.g., three dimensional (3D) printed structure). In some examples, a build piece may be manufactured such that the structural supports are internal to the completed build piece. However, removing the structural supports may reduce the weight of the build piece and reduce the amount of debris trapped within the build piece. Thus, certain aspects of the disclosure are directed to a hose including a bendable and elongated tube member as well as a fracturing member configured to fracture an internal support structure within an additively manufactured part.
    Type: Grant
    Filed: January 25, 2023
    Date of Patent: April 8, 2025
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Bahram Issari, Michael Thomas Kenworthy, Taylor Caitlin Doty
  • Patent number: 12251884
    Abstract: Systems and methods of support structures in powder-bed fusion (PBF) are provided. Support structures can be formed of bound powder, which can be, for example, compacted powder, compacted and sintered powder, powder with a binding agent applied, etc. Support structures can be formed of non-powder support material, such as a foam. Support structures can be formed to include resonant structures that can be removed by applying a resonance frequency. Support structures can be formed to include structures configured to melt when electrical current is applied for easy removal.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: March 18, 2025
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Eahab Nagi El Naga, John Russell Bucknell, Chor Yen Yap, Broc William TenHouten, Antonio Bernerd Martinez
  • Patent number: 12249812
    Abstract: Techniques for co-printing of bus bars for printed structural energy modules are presented herein. An apparatus in accordance with an aspect of the present disclosure comprises a first component configured to be a primary structure of a vehicle, the first component-co-printed with a first electrical conductive path, the first electrical conductive path configured to be connected to a second electrical conductive path of a second component of the vehicle, wherein the first electrical conductive path and the second electrical conductive path are configured to enable electricity transmission.
    Type: Grant
    Filed: January 18, 2022
    Date of Patent: March 11, 2025
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: John Russell Bucknell, Antonio Bernerd Martinez
  • Patent number: 12226824
    Abstract: Techniques for rapid powder removal in a 3-D printer are disclosed. In various embodiments, the 3-D printer has a build plate for supporting a build piece. The build plate includes first structures for supporting unfused powder on a top of the build plate when the first structures are in a closed configuration. The first structures can transition to an open configuration to expose paths for allowing the unfused powder to pass through the build plate, and a second structure for preventing the build piece from passing through the build plate when the first structures are in the open configuration. In various embodiments, the unfused powder can thereafter be replaced with cool powder to assist in forming a predictable microstructure that makes up the build piece.
    Type: Grant
    Filed: November 5, 2021
    Date of Patent: February 18, 2025
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventor: Michael Thomas Kenworthy
  • Patent number: 12220819
    Abstract: Aspects for implementing 3-D printed metrology feature geometries and detection are disclosed. The apparatus may a measurement device for a 3-D printed component. The component may include a plurality of printed-in metrology features arranged at different feature locations on a surface of the component. The measurement device can be configured to detect the feature locations of the printed-in metrology features and to determine a position or an orientation of the component based on the detected feature locations. In various embodiments, the metrology feature may be a protruding or recessed spherical portion, with the corresponding feature location at the center of the sphere.
    Type: Grant
    Filed: October 19, 2021
    Date of Patent: February 11, 2025
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Keith McKay, Richard Kingston, Lukas Czinger, Jakub Preis, Sam Miller, Aron Derecichei, Eric Monteith
  • Publication number: 20250041976
    Abstract: This disclosure describes an additive manufacturing method that includes monitoring a temperature of a portion of a build plane during an additive manufacturing operation using a temperature sensor as a heat source passes through the portion of the build plane; detecting a peak temperature associated with one or more passes of the heat source through the portion of the build plane; determining a threshold temperature by reducing the peak temperature by a predetermined amount; identifying a time interval during which the monitored temperature exceeds the threshold temperature; identifying, using the time interval, a change in manufacturing conditions likely to result in a manufacturing defect; and changing a process parameter of the heat source in response to the change in manufacturing conditions.
    Type: Application
    Filed: October 29, 2024
    Publication date: February 6, 2025
    Applicant: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Lars Jacquemetton, Vivek R. Dave, Mark J. Cola, Glenn Wikle, R. Bruce Madigan
  • Patent number: 12208465
    Abstract: An additive manufacturing system comprises a build plane and an energy source configured to direct energy onto a work region of the build plane. An optical detector is configured to receive one or more optical signals from the work region. An optical filter is positioned between the work region and the optical detector, wherein the optical filter includes a first partially transmissive polarized filter having a first polarization axis and a second partially transmissive polarized filter having a second polarization axis. The first polarization axis is rotationally offset from the second polarization axis approximately 90 degrees. The optical filter improves the signal to noise ratio of the optical sensors.
    Type: Grant
    Filed: November 6, 2020
    Date of Patent: January 28, 2025
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Darren Beckett, Martin S. Piltch, Scott Betts, Alberto M. Castro, Kevin Anderson, Lars Jacquemetton, Luis Aguilar
  • Patent number: 12203397
    Abstract: Multifunction noise suppression and crash structures are disclosed. In one aspect of the disclosure, the multifunction structure includes a body, inlet and outlet pipes, and a plurality of walls within the body that bound resonator cells and that are configured to suppress exhaust noise passing through the resonator cells from the inlet to the outlet pipes. The structure may be positioned between crash rails at the rear of the vehicle and between the engine and bumper. The walls may be generally aligned with, or near, the predicted impact direction and they may crumple in a controlled manner during an impact. In various embodiments the structure is 3D printed to enable construction of a wide diversity of geometric topologies and to minimize mass.
    Type: Grant
    Filed: February 17, 2021
    Date of Patent: January 21, 2025
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Antonio Bernerd Martinez, Yong-Bae Cho, John Russell Bucknell, Michael Vasile, Michael Bolton
  • Patent number: 12194536
    Abstract: Aspects are provided relating to additive manufacturing. In one aspect, an apparatus for producing a three-dimensional (3D) structure is described that includes a build chamber having a top portion with windows through which radiative energy from one or more sources is provided to the build chamber to produce the 3D structure, and one or more manifolds disposed within the build chamber. The manifolds are configured to perform a gas exchange within the build chamber, and each manifold is positioned above a region where envelopes of radiative energy from the one or more sources overlap. In another aspect, the manifolds are moved to a first position adjacent to the top portion of the build chamber during a first mode of operation and moved to a second position away from the top portion of the build chamber during a second mode of operation.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: January 14, 2025
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Broc William TenHouten, Eahab Nagi El Naga
  • Patent number: 12194674
    Abstract: A multi-material three-dimensional (3-D) powder bed fusion-based (PBF) printer is disclosed. In one aspect, the 3-D PBF includes a body, a controller coupled to the body, a plurality of cartridges coupled to a print nozzle, an energy source coupled to an upper surface of the body, a deflector for deflecting an energy beam from the energy source, and a build plate on which a build piece can be 3-D printed. Each cartridge may include a slurry in which a specific print material or alloy is suspended. A depositor may selectively deposit the slurry onto the build plate to form a plurality of consecutive layers. For a given layer or a given region thereof, the controller may selectively deposit different amounts of the slurry to produce an alloy having a desired composition. A heating element may be used to vaporize the solvent in the deposited slurry. Using the deflector, the energy source can fuse the regions to sinter the deposited material and in some embodiments, to vaporize the solvent prior to sintering.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: January 14, 2025
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Broc William TenHouten, Eahab Nagi El Naga, John Russell Bucknell
  • Patent number: 12172371
    Abstract: This invention teaches a quality assurance system for additive manufacturing. This invention teaches a multi-sensor, real-time quality system including sensors, affiliated hardware, and data processing algorithms that are Lagrangian-Eulerian with respect to the reference frames of its associated input measurements. The quality system for Additive Manufacturing is capable of measuring true in-process state variables associated with an additive manufacturing process, i.e., those in-process variables that define a feasible process space within which the process is deemed nominal. The in-process state variables can also be correlated to the part structure or microstructure and can then be useful in identifying particular locations within the part likely to include defects.
    Type: Grant
    Filed: November 17, 2023
    Date of Patent: December 24, 2024
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Vivek R. Dave, R. Bruce Madigan, Mark J. Cola, Martin S. Piltch
  • Patent number: 12152629
    Abstract: The present aspects include an adhesive and mechanically bonded adapter or node. The adapter or node comprises a connection member, including: an outer wall extending in a first direction from a first proximal end to a first distal end; an inner wall extending within the outer wall, in the first direction, from a second proximal end to a second distal end; and a base wall extending from an inner surface of the outer wall to an outer surface of the inner wall between the first proximal end and the second proximal end; and wherein the outer wall, the inner wall, and the base wall define a space having a distance between the outer wall and the inner wall that varies in the first direction, wherein the space is configured to fixedly position an end portion of a tube inserted into the space such that the end portion is fixed to the inner surface of the outer wall and the outer surface of the inner wall.
    Type: Grant
    Filed: January 24, 2023
    Date of Patent: November 26, 2024
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventor: Michael Marek Grabis
  • Patent number: 12151316
    Abstract: This disclosure describes an additive manufacturing method that includes monitoring a temperature of a portion of a build plane during an additive manufacturing operation using a temperature sensor as a heat source passes through the portion of the build plane; detecting a peak temperature associated with one or more passes of the heat source through the portion of the build plane; determining a threshold temperature by reducing the peak temperature by a predetermined amount; identifying a time interval during which the monitored temperature exceeds the threshold temperature; identifying, using the time interval, a change in manufacturing conditions likely to result in a manufacturing defect; and changing a process parameter of the heat source in response to the change in manufacturing conditions.
    Type: Grant
    Filed: August 25, 2022
    Date of Patent: November 26, 2024
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Lars Jacquemetton, Vivek R. Dave, Mark J. Cola, Glenn Wikle, R. Bruce Madigan
  • Patent number: 12138772
    Abstract: A parts table may comprise a structure including a first surface, a base including a platform affixed to the structure, and kinematic couplers secured to the base and configured to dock with complementary kinematic couplers of an alignment structure, the alignment structure being secured to a floor of an assembly cell, the first surface including a parts interface configured to hold a plurality of parts for assembly in the assembly cell, such that each part of the plurality of parts can be picked up by a robot of the assembly cell when the parts table is docked with the alignment structure, and the parts table is movable to a new location when the kinematic couplers are undocked from the alignment structure.
    Type: Grant
    Filed: April 27, 2022
    Date of Patent: November 12, 2024
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Patrick Minwoo Jeon, Jason Vincent Gallagher, Vincent Arunas Burokas, Lukas Philip Czinger
  • Publication number: 20240367269
    Abstract: The disclosed embodiments relate to the monitoring and control of additive manufacturing. In particular, a method is shown for removing errors inherent in thermal measurement equipment so that the presence of errors in a product build operation can be identified and acted upon with greater precision. Instead of monitoring a grid of discrete locations on the build plane with a temperature sensor, the intensity, duration and in some cases position of each scan is recorded in order to characterize one or more build operations.
    Type: Application
    Filed: July 18, 2024
    Publication date: November 7, 2024
    Applicant: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Vivek R. Dave, Mark J. Cola
  • Patent number: 12115583
    Abstract: Systems and methods for adhesive-based part retention features in additively manufactured structures are disclosed. A structure includes a first AM part configured to connect to a second part via a primary connection applied to an interface between the first AM part and the second part. The structure includes at least one retention element including a secondary connection. The secondary connection includes a first adhesive configured to secure the first AM part and the second part. The secondary connection may be located to provide a connection between the first AM part and the second part.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: October 15, 2024
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Thomas Samuel Bowden, Jr., Chukwubuikem Marcel Okoli, Richard Winston Hoyle
  • Patent number: 12111638
    Abstract: Adaptable manufacturing systems, methods, and apparatuses are disclosed. An apparatus for manufacturing a product in accordance with the present disclosure may include a design apparatus, an assembly apparatus, and a control apparatus, coupled to the design apparatus and the assembly apparatus. The control apparatus receives input information from the design apparatus and the assembly apparatus. The control apparatus provides output information for altering at least one parameter used by at least one of the design apparatus and the assembly apparatus in the manufacture of the product.
    Type: Grant
    Filed: June 9, 2021
    Date of Patent: October 8, 2024
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Kevin Robert Czinger, Michael Thomas Kenworthy, Lukas Philip Czinger, Jinbo Chen, Antonio Bernerd Martinez, Matthew Cooper Keller, Alex James Hamade
  • Publication number: 20240326326
    Abstract: This invention teaches a multi-sensor quality inference system for additive manufacturing. This invention still further teaches a quality system that is capable of discerning and addressing three quality issues: i) process anomalies, or extreme unpredictable events uncorrelated to process inputs; ii) process variations, or difference between desired process parameters and actual operating conditions; and iii) material structure and properties, or the quality of the resultant material created by the Additive Manufacturing process. This invention further teaches experimental observations of the Additive Manufacturing process made only in a Lagrangian frame of reference. This invention even further teaches the use of the gathered sensor data to evaluate and control additive manufacturing operations in real time.
    Type: Application
    Filed: February 13, 2024
    Publication date: October 3, 2024
    Applicant: Divergent Technologies, Inc.
    Inventors: Vivek R. Dave, David D. Clark, Matias Roybal, Mark J. Cola, Martin S. Piltch, R. Bruce Madigan, Alberto Castro
  • Publication number: 20240326158
    Abstract: This disclosure describes various methods and apparatus for characterizing an additive manufacturing process. A method for characterizing the additive manufacturing process can include generating scans of an energy source across a build plane; measuring an amount of energy radiated from the build plane during each of the scans using an optical sensor; determining an area of the build plane traversed during the scans; determining a thermal energy density for the area of the build plane traversed by the scans based upon the amount of energy radiated and the area of the build plane traversed by the scans; mapping the thermal energy density to one or more location of the build plane; determining that the thermal energy density is characterized by a density outside a range of density values; and thereafter, adjusting subsequent scans of the energy source across or proximate the one or more locations of the build plane.
    Type: Application
    Filed: March 11, 2024
    Publication date: October 3, 2024
    Applicant: DIVERGENT TECHNOLOGIES, INC.
    Inventors: R. Bruce Madigan, Lars Jacquemetton, Glenn Wikle, Mark J. Cola, Vivek R. Dave, Darren Beckett, Alberto M. Castro
  • Patent number: 12103008
    Abstract: An apparatus for producing spherical metallic powders through continuous ball milling. The apparatus includes a comminution component. The comminution component includes an inlet to receive a metallic material at a first region within the comminution component and an outlet to dispense the metallic powder from a second region within the comminution component. The apparatus includes a plurality of grinding components to grind the metallic material, the plurality of grinding components being arranged within the comminution component. The apparatus includes a drive component, connected with the comminution component, to induce movement of the metallic material and the plurality of grinding components within the comminution component such that the metallic material is fragmented through contact with the plurality of grinding components at the first region and an external surface of the fragmented metallic material is altered at the second region to produce the metallic powder.
    Type: Grant
    Filed: September 21, 2021
    Date of Patent: October 1, 2024
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Alex Teng, Chan Cheong Pun, Prabir Chaudhury, Michael Thomas Kenworthy, Narender Lakshman