Patents Assigned to DIVERGENT TECHNOLOGIES, INC.
  • Patent number: 12172371
    Abstract: This invention teaches a quality assurance system for additive manufacturing. This invention teaches a multi-sensor, real-time quality system including sensors, affiliated hardware, and data processing algorithms that are Lagrangian-Eulerian with respect to the reference frames of its associated input measurements. The quality system for Additive Manufacturing is capable of measuring true in-process state variables associated with an additive manufacturing process, i.e., those in-process variables that define a feasible process space within which the process is deemed nominal. The in-process state variables can also be correlated to the part structure or microstructure and can then be useful in identifying particular locations within the part likely to include defects.
    Type: Grant
    Filed: November 17, 2023
    Date of Patent: December 24, 2024
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Vivek R. Dave, R. Bruce Madigan, Mark J. Cola, Martin S. Piltch
  • Patent number: 12152629
    Abstract: The present aspects include an adhesive and mechanically bonded adapter or node. The adapter or node comprises a connection member, including: an outer wall extending in a first direction from a first proximal end to a first distal end; an inner wall extending within the outer wall, in the first direction, from a second proximal end to a second distal end; and a base wall extending from an inner surface of the outer wall to an outer surface of the inner wall between the first proximal end and the second proximal end; and wherein the outer wall, the inner wall, and the base wall define a space having a distance between the outer wall and the inner wall that varies in the first direction, wherein the space is configured to fixedly position an end portion of a tube inserted into the space such that the end portion is fixed to the inner surface of the outer wall and the outer surface of the inner wall.
    Type: Grant
    Filed: January 24, 2023
    Date of Patent: November 26, 2024
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventor: Michael Marek Grabis
  • Patent number: 12151316
    Abstract: This disclosure describes an additive manufacturing method that includes monitoring a temperature of a portion of a build plane during an additive manufacturing operation using a temperature sensor as a heat source passes through the portion of the build plane; detecting a peak temperature associated with one or more passes of the heat source through the portion of the build plane; determining a threshold temperature by reducing the peak temperature by a predetermined amount; identifying a time interval during which the monitored temperature exceeds the threshold temperature; identifying, using the time interval, a change in manufacturing conditions likely to result in a manufacturing defect; and changing a process parameter of the heat source in response to the change in manufacturing conditions.
    Type: Grant
    Filed: August 25, 2022
    Date of Patent: November 26, 2024
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Lars Jacquemetton, Vivek R. Dave, Mark J. Cola, Glenn Wikle, R. Bruce Madigan
  • Patent number: 12138772
    Abstract: A parts table may comprise a structure including a first surface, a base including a platform affixed to the structure, and kinematic couplers secured to the base and configured to dock with complementary kinematic couplers of an alignment structure, the alignment structure being secured to a floor of an assembly cell, the first surface including a parts interface configured to hold a plurality of parts for assembly in the assembly cell, such that each part of the plurality of parts can be picked up by a robot of the assembly cell when the parts table is docked with the alignment structure, and the parts table is movable to a new location when the kinematic couplers are undocked from the alignment structure.
    Type: Grant
    Filed: April 27, 2022
    Date of Patent: November 12, 2024
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Patrick Minwoo Jeon, Jason Vincent Gallagher, Vincent Arunas Burokas, Lukas Philip Czinger
  • Publication number: 20240367269
    Abstract: The disclosed embodiments relate to the monitoring and control of additive manufacturing. In particular, a method is shown for removing errors inherent in thermal measurement equipment so that the presence of errors in a product build operation can be identified and acted upon with greater precision. Instead of monitoring a grid of discrete locations on the build plane with a temperature sensor, the intensity, duration and in some cases position of each scan is recorded in order to characterize one or more build operations.
    Type: Application
    Filed: July 18, 2024
    Publication date: November 7, 2024
    Applicant: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Vivek R. Dave, Mark J. Cola
  • Patent number: 12115583
    Abstract: Systems and methods for adhesive-based part retention features in additively manufactured structures are disclosed. A structure includes a first AM part configured to connect to a second part via a primary connection applied to an interface between the first AM part and the second part. The structure includes at least one retention element including a secondary connection. The secondary connection includes a first adhesive configured to secure the first AM part and the second part. The secondary connection may be located to provide a connection between the first AM part and the second part.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: October 15, 2024
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Thomas Samuel Bowden, Jr., Chukwubuikem Marcel Okoli, Richard Winston Hoyle
  • Patent number: 12111638
    Abstract: Adaptable manufacturing systems, methods, and apparatuses are disclosed. An apparatus for manufacturing a product in accordance with the present disclosure may include a design apparatus, an assembly apparatus, and a control apparatus, coupled to the design apparatus and the assembly apparatus. The control apparatus receives input information from the design apparatus and the assembly apparatus. The control apparatus provides output information for altering at least one parameter used by at least one of the design apparatus and the assembly apparatus in the manufacture of the product.
    Type: Grant
    Filed: June 9, 2021
    Date of Patent: October 8, 2024
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Kevin Robert Czinger, Michael Thomas Kenworthy, Lukas Philip Czinger, Jinbo Chen, Antonio Bernerd Martinez, Matthew Cooper Keller, Alex James Hamade
  • Publication number: 20240326158
    Abstract: This disclosure describes various methods and apparatus for characterizing an additive manufacturing process. A method for characterizing the additive manufacturing process can include generating scans of an energy source across a build plane; measuring an amount of energy radiated from the build plane during each of the scans using an optical sensor; determining an area of the build plane traversed during the scans; determining a thermal energy density for the area of the build plane traversed by the scans based upon the amount of energy radiated and the area of the build plane traversed by the scans; mapping the thermal energy density to one or more location of the build plane; determining that the thermal energy density is characterized by a density outside a range of density values; and thereafter, adjusting subsequent scans of the energy source across or proximate the one or more locations of the build plane.
    Type: Application
    Filed: March 11, 2024
    Publication date: October 3, 2024
    Applicant: DIVERGENT TECHNOLOGIES, INC.
    Inventors: R. Bruce Madigan, Lars Jacquemetton, Glenn Wikle, Mark J. Cola, Vivek R. Dave, Darren Beckett, Alberto M. Castro
  • Patent number: 12103008
    Abstract: An apparatus for producing spherical metallic powders through continuous ball milling. The apparatus includes a comminution component. The comminution component includes an inlet to receive a metallic material at a first region within the comminution component and an outlet to dispense the metallic powder from a second region within the comminution component. The apparatus includes a plurality of grinding components to grind the metallic material, the plurality of grinding components being arranged within the comminution component. The apparatus includes a drive component, connected with the comminution component, to induce movement of the metallic material and the plurality of grinding components within the comminution component such that the metallic material is fragmented through contact with the plurality of grinding components at the first region and an external surface of the fragmented metallic material is altered at the second region to produce the metallic powder.
    Type: Grant
    Filed: September 21, 2021
    Date of Patent: October 1, 2024
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Alex Teng, Chan Cheong Pun, Prabir Chaudhury, Michael Thomas Kenworthy, Narender Lakshman
  • Patent number: 12090551
    Abstract: Methods for removing support structures in additively manufactured parts are disclosed. A method in accordance with an aspect of the present disclosure comprises inserting a demolition object in a first state into a hollow portion of a 3-D printed part, breaking a support structure within the hollow portion by contact with the demolition object, changing the demolition object into a second state while the demolition object is within the hollow portion of the 3-D printed part, and removing the demolition object from the hollow portion of the 3-D printed part.
    Type: Grant
    Filed: April 25, 2022
    Date of Patent: September 17, 2024
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Michael Thomas Kenworthy, Taylor Caitlin Doty, Bahram Issari, Narender Shankar Lakshman, Krzysztof Artysiewicz
  • Publication number: 20240302286
    Abstract: This disclosure describes various system and methods for monitoring photons emitted by a heat source of an additive manufacturing device. Sensor data recorded while monitoring the photons can be used to predict metallurgical, mechanical and geometrical properties of a part produced during an additive manufacturing operation. In some embodiments, a test pattern can be used to calibrate an additive manufacturing device.
    Type: Application
    Filed: May 10, 2024
    Publication date: September 12, 2024
    Applicant: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Vivek R. Dave, Mark J. Cola, R. Bruce Madigan, Alberto Castro, Glenn Wikle, Lars Jacquemetton, Peter Campbell
  • Patent number: 12083596
    Abstract: Methods and apparatuses for disassembling components are described. An apparatus in accordance with an aspect of the present disclosure comprises a first component including a first adhesive interface, a second component including a second adhesive interface, a joint between the first and second adhesive interfaces, the joint comprising an adhesive bonding to the first adhesive interface and to the second adhesive interface, such that the first component and the second component are joined together, and at least one thermal element in the adhesive, wherein the at least one thermal element is configured to weaken the joint by heating the adhesive when an energy is applied to the thermal element.
    Type: Grant
    Filed: December 20, 2021
    Date of Patent: September 10, 2024
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventor: Narender Shankar Lakshman
  • Patent number: 12059867
    Abstract: One aspect is an apparatus including a first node including a first bonding surface and a second node including a second bonding surface. The apparatus includes a feature configured to accept an adhesive and an adhesive channel coupled to the feature configured to accept the adhesive. The apparatus includes a shear joint coupling the first node and the second node, the shear joint configured to receive the adhesive in an adhesive region formed by the first bonding surface and the second bonding surface, the adhesive for coupling the first bonding surface to the second bonding surface through the feature configured to accept the adhesive.
    Type: Grant
    Filed: February 4, 2022
    Date of Patent: August 13, 2024
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventor: Calvin Ray MacLean
  • Patent number: 12053841
    Abstract: The disclosed embodiments relate to the monitoring and control of additive manufacturing. In particular, a method is shown for removing errors inherent in thermal measurement equipment so that the presence of errors in a product build operation can be identified and acted upon with greater precision. Instead of monitoring a grid of discrete locations on the build plane with a temperature sensor, the intensity, duration and in some cases position of each scan is recorded in order to characterize one or more build operations.
    Type: Grant
    Filed: July 14, 2021
    Date of Patent: August 6, 2024
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Vivek R. Dave, Mark J. Cola
  • Publication number: 20240207971
    Abstract: This disclosure describes various methods and apparatus for characterizing an additive manufacturing process. A method for characterizing the additive manufacturing process can include generating scans of an energy source across a build plane; measuring an amount of energy radiated from the build plane during each of the scans using an optical sensor; determining an area of the build plane traversed during the scans; determining a thermal energy density for the area of the build plane traversed by the scans based upon the amount of energy radiated and the area of the build plane traversed by the scans; mapping the thermal energy density to one or more location of the build plane; determining that the thermal energy density is characterized by a density outside a range of density values; and thereafter, adjusting subsequent scans of the energy source across or proximate the one or more locations of the build plane.
    Type: Application
    Filed: March 11, 2024
    Publication date: June 27, 2024
    Applicant: DIVERGENT TECHNOLOGIES, INC.
    Inventors: R. Bruce Madigan, Lars Jacquemetton, Glenn Wikle, Mark J. Cola, Vivek R. Dave, Darren Beckett, Alberto M. Castro
  • Patent number: 12019026
    Abstract: This disclosure describes various system and methods for monitoring photons emitted by a heat source of an additive manufacturing device. Sensor data recorded while monitoring the photons can be used to predict metallurgical, mechanical and geometrical properties of a part produced during an additive manufacturing operation. In some embodiments, a test pattern can be used to calibrate an additive manufacturing device.
    Type: Grant
    Filed: April 19, 2023
    Date of Patent: June 25, 2024
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Vivek R. Dave, Mark J. Cola, R. Bruce Madigan, Alberto Castro, Glenn Wikle, Lars Jacquemetton, Peter Campbell
  • Patent number: 11947335
    Abstract: Aspects of methods, apparatuses, and computer-readable media for performing multi-material selection optimization (MMSO) to provide topologically and geometrically optimized multi-component structures (MCSs) across a plurality of design inputs and constraints are proposed. In some embodiments, a 3-D print model of an object based on load case criteria is obtained. A portion of the 3-D print model is determined that can be replaced with a commercial-off-the-shelf (COTS) part model such that the load case criteria remain satisfied. The portion or the 3-D print model can then be replaced with the COTS part model to determine the MCS model. In various embodiments, a mesh representation of the model can be generated, and plurality of optimization techniques can be used to determine the MCS model.
    Type: Grant
    Filed: November 9, 2021
    Date of Patent: April 2, 2024
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Jinbo Chen, Michael Morgan
  • Patent number: 11938560
    Abstract: This disclosure describes various methods and apparatus for characterizing an additive manufacturing process. A method for characterizing the additive manufacturing process can include generating scans of an energy source across a build plane; measuring an amount of energy radiated from the build plane during each of the scans using an optical sensor; determining an area of the build plane traversed during the scans; determining a thermal energy density for the area of the build plane traversed by the scans based upon the amount of energy radiated and the area of the build plane traversed by the scans; mapping the thermal energy density to one or more location of the build plane; determining that the thermal energy density is characterized by a density outside a range of density values; and thereafter, adjusting subsequent scans of the energy source across or proximate the one or more locations of the build plane.
    Type: Grant
    Filed: June 14, 2022
    Date of Patent: March 26, 2024
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: R. Bruce Madigan, Lars Jacquemetton, Glenn Wikle, Mark J. Cola, Vivek R. Dave, Darren Beckett, Alberto M. Castro
  • Patent number: 11931956
    Abstract: This invention teaches a multi-sensor quality inference system for additive manufacturing. This invention still further teaches a quality system that is capable of discerning and addressing three quality issues: i) process anomalies, or extreme unpredictable events uncorrelated to process inputs; ii) process variations, or difference between desired process parameters and actual operating conditions; and iii) material structure and properties, or the quality of the resultant material created by the Additive Manufacturing process. This invention further teaches experimental observations of the Additive Manufacturing process made only in a Lagrangian frame of reference. This invention even further teaches the use of the gathered sensor data to evaluate and control additive manufacturing operations in real time.
    Type: Grant
    Filed: September 13, 2022
    Date of Patent: March 19, 2024
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Vivek R. Dave, David D. Clark, Matias Roybal, Mark J. Cola, Martin S. Piltch, R. Bruce Madigan, Alberto Castro
  • Patent number: 11928966
    Abstract: A virtual railroad of vehicles is disclosed. In one aspect of the disclosure, a system includes one or more passenger vehicles of a peloton, and a first engine vehicle of the peloton. The first engine vehicle communicatively connected to the one or more passenger vehicles, wherein the first engine vehicle comprises: a processor communicatively connected to a memory and is configured to receive status information of the one or more passenger vehicles, determine, based on the received status information, a set of current values for a set of vehicle attributes for each of the one or more passenger vehicles, and adjust, based on the set of current values for the set of vehicle attributes, a position of a corresponding passenger vehicle of the one or more passenger vehicles.
    Type: Grant
    Filed: January 12, 2022
    Date of Patent: March 12, 2024
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Kevin Robert Czinger, John Russell Bucknell, Jinbo Chen, Gregory S. Weaver