Patents Assigned to Dow Global Technologies Inc.
  • Patent number: 8957123
    Abstract: A process for producing resilient, flexible polyurethane foams that function well in noise and vibration absorption applications for vehicle applications that are made from a blend of polyols (i) and an isocyanate (ii), wherein the blend of polyols (i) comprises a mixture of polyether polyols (i.a) that each has a hydroxyl equivalent weight of from 1200 to 3000 and at least 70% primary hydroxyl groups, from 5 to 80% by weight of the ethylene oxide-capped polypropylene oxides are nominally difunctional, from 0.5 to 20% by weight of the ethylene oxide-capped polypropylene oxides have a nominal functionality of four or higher, and the balance of the ethylene oxide-capped polypropylene oxides, but not less than 1.5% by weight thereof, are nominally trifunctional; an autocatalytic polyol (i.b) having a functionality in the range of 2 to 8 and a hydroxyl number in the range of 15 to 200, wherein said autocatalytic polyol compound comprising at least one tertiary amine group; and a low unsaturation polyol (i.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: February 17, 2015
    Assignee: Dow Global Technologies Inc
    Inventors: Issam Lazraq, Helmut Stegt, Allan James, Stephen R. Burks
  • Patent number: 8859830
    Abstract: Methods and assemblies for improving the reaction kinetics of, conserving reactants utilized in, and/or producing a more pure reaction product of, liquid-phase reactions that involve volatile reactants and products are provided. The methods and assemblies herein provide for a feed of reaction liquid to two or more absorption zones, wherein the temperature and/or feed rate of the liquid is independently adjusted prior to introduction into at least one of the two or more absorption zones. More particularly, the temperature and feed rate of the liquid as delivered to each absorption zone can be adjusted independently to optimize the absorption of at least a portion of any gaseous reactants and byproducts from the gaseous product stream and/or to optimize reaction zone conditions. Reaction kinetics may thus be improved, or substantially maintained.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: October 14, 2014
    Assignee: Dow Global Technologies Inc.
    Inventor: John D. Myers
  • Patent number: 8735612
    Abstract: A pretreated titanium silicalite with MFI structure (TS-1) catalyst which has been pretreated with methanol, and then optionally filtered and optionally air-dried to form a pretreated activated TS-1 catalyst. The activated TS-1 may be used in an epoxidation reaction with no additional methanol added and has equivalent activity to TS-1 used with large excesses of methanol. By removing the need for additional methanol during the reaction, the losses of epichlorohydrin from solvolysis are minimized significantly.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: May 27, 2014
    Assignee: Dow Global Technologies, Inc.
    Inventor: Hannah L. Crampton
  • Patent number: 8669384
    Abstract: A process for preparing a divinylarene dioxide including (a) reacting at least one divinylarene with hypochlorous acid to form a chlorohydrin; and (b) treating the chlorohydrin formed in step (a) with at least one base, under conditions to form a divinylarene dioxide product.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: March 11, 2014
    Assignee: Dow Global Technologies Inc.
    Inventors: Eric B. Ripplinger, David Jean, David Burow, Khiet Pham, Maurice Marks, Gyongyi Gulyas
  • Patent number: 8664453
    Abstract: A process and apparatus for recovering dichlorohydrins from a mixture comprising dichlorohydrins, one or more compounds selected from esters of dichlorohydrins, monochlorohydrins and/or esters thereof, and multihydroxylated-aliphatic hydrocarbon compounds and/or esters thereof, and optionally one or more substances comprising water, chlorinating agents, catalysts and/or esters of catalysts is disclosed. The mixture is distilled or fractionated to separate a lower boiling fraction comprising dichlorohydrin(s) from the mixture to form a higher boiling fraction comprising the residue of the distillation or fractionation. The higher boiling fraction is stripped to recover remaining dichlorohydrins. Advantages include more efficient recovery of dichlorohydrins for a given distillation column, less waste due to avoiding the conditions conducive to the formation of heavy byproducts, and reduced capital investment in recovery equipment.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: March 4, 2014
    Assignee: Dow Global Technologies Inc.
    Inventors: Danil Tirtowidjojo, Andrei S. Merenov, Christian D. Kneupper, Bruce D. Hook, Anil I. Mehta
  • Publication number: 20140044906
    Abstract: Disclosed are multilayer film structures having annular profiles, and methods and apparatus of making the structures disclosed. The annular multilayer articles have a uniform thickness, at least four layers and comprise overlapped and non-overlapped circumferential areas; wherein the layer structure of the non-overlapped area is doubled in the overlapped layer. A method of making the structure includes providing a multilayer flow stream with at least four layers of thermoplastic resinous materials; feeding the multilayer flow stream to a distribution manifold of an annular die to form an annular multilayer flow stream; and removing the annular multilayer flow stream from the annular die to form the annular multilayer structure.
    Type: Application
    Filed: October 18, 2013
    Publication date: February 13, 2014
    Applicant: Dow Global Technologies Inc.
    Inventors: Joseph Dooley, Jeffrey M. Robacki, Mark A. Barger, Robert E. Wrisley, Sam l. Crabtree, Calvin L. Pavlicek
  • Patent number: 8633327
    Abstract: A process for preparing a divinylarene dioxide including reacting (a) at least one divinylarene; and (b) at least one peracid oxidant compound, under conditions to form a divinylarene dioxide product; wherein the peracid oxidant compound is capable of providing an increased yield of a divinylarene dioxide product.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: January 21, 2014
    Assignee: Dow Global Technologies Inc.
    Inventors: Gyongyi Gulyas, Robert J. Wright, Martha P. Hernandez, Eric P. Ripplinger
  • Patent number: 8629305
    Abstract: A process and apparatus for recovering dichlorohydrins from a mixture comprising dichlorohydrins, water, one or more compounds selected from esters of dichlorohydrins, monochlorohydrins and/or esters thereof, and multihydroxylated-aliphatic hydrocarbon compounds and/or esters thereof, and optionally one or more substances comprising chlorinating agents, catalysts and/or esters of catalysts is disclosed. A liquid aqueous phase is recycled to the distillation column while distilling or fractionating the mixture to separate dichlorohydrin(s) and water from the mixture. Advantages include more efficient recovery of dichlorohydrins for a given distillation column, less waste due to avoiding the conditions conducive to the formation of heavy byproducts, and reduced capital investment in recovery equipment.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: January 14, 2014
    Assignee: Dow Global Technologies Inc
    Inventors: Danil Tirtowidjojo, Andrei S. Merenov, Christian D. Kneupper, Bruce D. Hook, Anil J. Mehta
  • Patent number: 8562885
    Abstract: Disclosed are multilayer film structures having annular profiles, and methods and apparatus of making the structures disclosed. The annular multilayer articles have a uniform thickness, at least four layers and comprise overlapped and non-overlapped circumferential areas; wherein the layer structure of the non-overlapped area is doubled in the overlapped layer. A method of making the structure includes providing a multilayer flow stream with at least four layers of thermoplastic resinous materials; feeding the multilayer flow stream to a distribution manifold of an annular die to form an annular multilayer flow stream; and removing the annular multilayer flow stream from the annular die to form the annular multilayer structure.
    Type: Grant
    Filed: February 16, 2010
    Date of Patent: October 22, 2013
    Assignee: Dow Global Technologies Inc.
    Inventors: Joseph Dooley, Jeffrey M. Robacki, Mark A. Barger, Robert E. Wrisley, Sam L. Crabtree, Calvin L. Pavlicek
  • Patent number: 8558027
    Abstract: The present disclosure relates to compositions, systems, and methods of forming an amine (e.g., methylenedianiline (MDA)) using an acid catalyst including, for example, a metal oxide-silica catalyst calcined at temperature(s) of about ?500° C. to form a solid acid silica-metal oxide catalyst. A metal oxide of a solid acid silica-metal oxide catalyst may comprise alumina. A process for making a solid acid silica-metal oxide catalyst may comprise calcining an amorphous alumina-silica material at temperature(s) of about ?500° C. and/or under an anhydrous and/or inert atmosphere. A rearrangement reaction of the condensation product of aniline and formaldehyde in the presence of a solid acid silica-metal oxide catalyst may yield more MDA and/or more desirable isomer(s) of MDA than reactions performed with a corresponding catalyst calcined at temperature(s) of less than 500° C.
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: October 15, 2013
    Assignee: Dow Global Technologies Inc.
    Inventors: Heiko Weiner, David C. Molzahn, Robert J. Gulotty, Jr.
  • Publication number: 20130237670
    Abstract: The instant invention is a high-density polyethylene composition, method of producing the same, articles made therefrom, and method of making such articles. The high-density polyethylene composition of the instant invention includes a first component, and a second component. The first component is a high molecular weight ethylene alpha-olefin copolymer having a density in the range of 0.915 to 0.940 g/cm3, and a melt index (I21.6) in the range of 0.5 to 10 g/10 minutes. The second component is a low molecular weight ethylene polymer having a density in the range of 0.965 to 0.980 g/cm3, and a melt index (I2) in the range of 50 to 1500 g/10 minutes. The high-density polyethylene composition has a melt index (I2) of at least 1, a density in the range of 0.950 to 0.960 g/cm3, and g? of 1.
    Type: Application
    Filed: April 22, 2013
    Publication date: September 12, 2013
    Applicant: Dow Global Technologies Inc.
    Inventors: William J. Michie, JR., Thomas W. Kay, Stephanie M. Whited, Dale M. Elley-Bristow, David T. Gillespie, Lonnie G. Hazlitt
  • Publication number: 20130211118
    Abstract: A method of continuously manufacturing organometallic compounds is provided where two or more reactants are conveyed to a reactor having a laminar flow contacting zone, a heat transfer zone, and a mixing zone having a turbulence-promoting device; and causing the reactants to form the organometallic compound.
    Type: Application
    Filed: August 15, 2012
    Publication date: August 15, 2013
    Applicants: Rohm and Haas Electronic Materials LLC, Dow Global Technologies Inc.
    Inventors: Ravindra S. Dixit, Hua Bai, Curtis D. Modtland, Robert A. Ware, John G. Pendergast, JR., Christopher P. Christenson, Deodatta Vinayak Shenai-Khatkhate, Artashes Amamchyan, Kenneth M. Crouch, Robert F. Polcari
  • Publication number: 20130189164
    Abstract: Disclosed are a process and apparatus for synthesizing nitroalkanes by reaction of a hydrocarbon feedstock with aqueous nitric acid. Energy and capital costs may be reduced by using a dividing wall column.
    Type: Application
    Filed: March 8, 2013
    Publication date: July 25, 2013
    Applicants: ANGUS Chemical Company, Dow Global Technologies Inc.
    Inventors: Mahesh Sawant, Daniel M. Trauth, John G. Pendergast
  • Patent number: 8481154
    Abstract: The backsheet comprises a coextruded multilayer sheet that comprises: i) an inner layer comprising a polyolefin resin; ii) a core layer comprising a polypropylene resin, a blend of a polypropylene resin and a maleic anhydride grafted polypropylene (MAH-g-PP), or a polypropylene resin/MAH-g-PP multilayer structure; iii) an outer layer comprising a maleic anhydride grafted polyvinylidene fluoride (MAH-g-PVDF), a blend of a polyvinylidene fluoride (PVDF) and a MAH-g-PVDF, or a PVDF/MAH-g-PVDF multilayer structure; iv) a first tie layer between the core layer and the outer layer; and v) an optional second tie layer between the core layer and the inner layer.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: July 9, 2013
    Assignee: Dow GLobal Technologies Inc.
    Inventors: Lih-Long Chu, Xuming Chen
  • Patent number: 8431198
    Abstract: A multilayer film comprises at least 3 layers including a first outer layer, a second outer layer and between the first and second outer layers at least one core layer. The first and second outer layers each comprise at least 75 weight percent of (a) at least one high impact polystyrene component. The core layer(s) comprises(s) (b) at least one styrene block copolymer that is present at a concentration of at least about 2 weight percent of the polymers in the film; and polymers (a), (b) and (c) at least one general purpose polystyrene having a Mw of more than 200,000 and 350,000 or less and that is present at a concentration of at least about 10 wt. % and up to at most about 50 wt. % of the polymers in the composition account for 100 percent by weight of the polymers in the polymer composition excluding polymeric additives.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: April 30, 2013
    Assignee: Dow Global Technologies Inc.
    Inventors: Robert L. McGee, Stephen J. Skapik, III, Julie R. Hatlewick
  • Publication number: 20130035413
    Abstract: The present invention discloses a structure comprising a plurality of three dimensional cells, wherein each cell comprises exterior walls defining an interior void wherein the walls comprise a plurality of struts and windows, the struts forming borders for the plurality of windows, wherein the struts have a plurality of pores. The present invention further discloses a viscoelastic foam having a ratio of elastic modulus (E?) at 20° C. to 25% compression force deflection (CFD) of 25 to 125.
    Type: Application
    Filed: October 5, 2012
    Publication date: February 7, 2013
    Applicant: Dow Global Technologies LLC (formerly known as Dow Global Technologies Inc.)
    Inventor: Dow Global Technologies LLC (formerly known as Dow Global Technologies Inc.)
  • Publication number: 20130012608
    Abstract: The present invention is directed to polymeric article comprising a blend of (a) a first polymeric component; (b) a second polymeric component, the second polymeric component including a propylene elastomer or a substantially linear or linear ethylene polymer; and (c) at least one reinforcement material. The polymeric articles desirably have one or more of the following characteristics: a soft touch feel, low gloss appearance, or a high surface durability.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 10, 2013
    Applicant: Dow Global Technologies, Inc.
    Inventors: Norwin van Riel, Pascal E.R.E.J. Lakeman
  • Publication number: 20120261163
    Abstract: Disclosed is a halogen-free, flame retardant thermoplastic resin composition based on polypropylene and one or more thermoplastic elastomers with an organic nitrogen- and/or phosphorus-based intumescent flame retardant comprising a piperazine component. The composition is processed easily to make a wire and cable sheath exhibiting a balance of high flame retardancy, good flexibility, high wet electrical resistance and excellent heat deformation properties, and which passes the VW-I flame retardancy test, the UL1581 heat deformation test at 150° C. and the wet electrical resistance test, and also exhibits good tensile and flexibility properties. Also disclosed is a wire and cable sheath made from the composition.
    Type: Application
    Filed: December 31, 2009
    Publication date: October 18, 2012
    Applicant: Dow Global Technologies Inc.
    Inventors: Xiang Yang Tai, Yabin Sun, Yurong Cao, Li Qiang Fan, Lin Fu, Geoffrey D. Brown, Manish Mundra
  • Patent number: 8287949
    Abstract: A method and composition for forming an adhesive bond is described. The method includes depositing an aqueous dispersion on a substrate to form a selectively activatable coating, the aqueous dispersion including (A) a polymer capable of forming an adhesive, (B) at least one dispersing agent; and (C) at least one of a tackifying resin, a wax, or an oil wherein the dispersion has at least one of an average particle size of from about 0.1 to about 100 microns and a polydispersity of less than 5; and selectively activating at least a portion of the coated substrate to form the adhesive bond.
    Type: Grant
    Filed: July 6, 2006
    Date of Patent: October 16, 2012
    Assignee: Dow Global Technologies Inc.
    Inventors: Kevin D. Maak, Selim Yalvac, Mike J. Levinson, Dale C. Schmidt, Brad Maurice Moncla, Matthew James Kalinowski
  • Publication number: 20120187225
    Abstract: In a process for producing a particulate polysaccharide derivative by dry-grinding a moist polysaccharide derivative the median length of the particles after dry-grinding is controlled by controlling the moisture content of the polysaccharide derivative prior to dry-grinding. Advantageously the median length of the particles after dry-grinding is adjusted to a first value by a first moisture content of the polysaccharide derivative prior to dry-grinding and is adjusted to a second value by a second moisture content.
    Type: Application
    Filed: August 31, 2010
    Publication date: July 26, 2012
    Applicant: Dow Global Technologies Inc.
    Inventors: Yvonne M. Goerlach-Doht, Juergen Hermanns