Abstract: Embodiments of the present disclosure are directed to an artificial turf filament formed from a formulation comprising an ethylene-based polymer having a density 0.900 g/c to 0.955 g/cc and a melt index (I2) of 0.1 g/10 min to 20 g/10 min as measured according to ASTM D1238 (at 190° C., 2.16 kg), and one or more polydimethylsiloxane (PDMS) components having a number average molecular weight (Mn) of from 10,000 g/mol to 500,000 g/mol, wherein the Mn is measured by Gel Permeation Chromatography (GPC).
Type:
Application
Filed:
May 3, 2019
Publication date:
August 5, 2021
Applicants:
Dow Global Technologies LLC, Dow Silicones Corporation
Inventors:
Eduardo Alvarez, David Lopez, Cosme Llop, Thibault Kervyn De Meerendre, Celine Chevallier
Abstract: The present disclosure provides a composition comprising: (A) a polypropylene polymer; (B) a polyolefin elastomer; (C) a polyacetoacetate compound having the Formula (I); and (D) an additive component. The present disclosure also provides an article made from the composition.
Abstract: A two-component solventless adhesive composition is disclosed, the adhesive composition comprising an isocyanate component comprising at least one isocyanate, and a polyol component comprising at least one amine-initiated polyol having a functionality of from 3 to 8 and a hydroxyl number of from 20 to 1,000, wherein the first and second components are formulated to be applied to separate substrates before being brought together. Further, a method for forming a laminate is disclosed, the method comprising uniformly applying the isocyanate component to a first substrate, uniformly applying the polyol component to a second substrate, bringing the first and second substrates together, thereby mixing and reacting the isocyanate component and the polyol component to form an adhesive between the first and second substrates, and curing the adhesive to bond the first and second substrates. Still further, a laminate formed by the method is disclosed.
Abstract: A process to prepare an ethylene-based polymer, said process comprising polymerizing a mixture comprising ethylene, at a pressure greater than, or equal to, 100 MPa, in the presence of at least one free-radical initiator; and in a reactor system comprising at least one reactor and at least one Hyper-compressor, and wherein at least one oil formulation, optionally comprising one or more lubrication agents, is added to the Hyper-compressor; and wherein at least one of the following steps takes place: A) thermally treating the one or more lubrication agents, in an oxygen-free atmosphere, to achieve a peroxide level ?10 ppm, based on the weight of the lubrication agent(s), and then adding said agent(s) to the oil formulation, prior to adding the oil formulation to the Hyper-compressor; or B) thermally treating the oil formulation, in an oxygen-free atmosphere, to achieve a peroxide level ?10 ppm, based on the weight of the oil formulation, prior to adding the oil formulation to the Hyper-compressor; C) a combinat
Abstract: A high pressure polymerization, as described herein, to form an ethylene-based polymer, comprising the following steps: polymerizing a reaction mixture comprising ethylene, using a reactor system comprising at least three ethylene-based feed streams and a reactor configuration that comprises at least four reaction zones, and at least one of the following a) through c), is met: (a) up to 100 wt % of the ethylene stream to the first zone comes from a high pressure recycle, and/or up to 100 wt % of the last ethylene stream to a zone comes from the output from a Primary compressor system; and/or (b) up to 100 wt % of the ethylene stream to first zone comes from the output from a Primary compressor system, and/or up to 100 wt % of the last ethylene stream to a zone comes from a high pressure recycle; and/or (c) the ethylene stream to the first zone, and/or the last ethylene stream to a zone, each comprises a controlled composition; and wherein each ethylene stream to a zone receives an output from two or more cyli
Type:
Grant
Filed:
June 22, 2017
Date of Patent:
August 3, 2021
Assignee:
Dow Global Technologies LLC
Inventors:
Cornelis J F Hosman, Nhi T. Y. Dang, Otto J. Berbee, Joaquin Flores
Abstract: Lower discharge temperatures and improved flow rates are obtained for the processing of meltable, solid crosslinkable compositions comprising a polymer, e.g., polyethylene, and a peroxide, in a single barrel extruder by equipping the extruder with an energy transfer (ET) screw that comprises: (1) an ET section with a distance averaged ET section depth of 8.0% to 10% of the extruder barrel internal diameter, and (2) a metering section with a metering section depth of 6.0% to 8% of the extruder barrel internal diameter.
Type:
Grant
Filed:
October 13, 2017
Date of Patent:
August 3, 2021
Assignee:
Dow Global Technologies LLC
Inventors:
Qian Gou, Mark A. Spalding, Bharat I. Chaudhary, Karl Seven
Abstract: The invention is an improved method of making an improved carbon molecular sieve (CMS) membrane in which a precursor polymer (e.g., polyimide) is pyrolyzed at a pyrolysis temperature to form a CMS membrane that is cooled to ambient temperature (about 40° C. or 30° C. to about 20° C.). The CMS membrane is then reheated to a reheating temperature less than the pyrolysis temperature to form the improved CMS membrane. The improved CMS membranes have shown an improved combination of selectivity and permeance as well as stability for separating hydrogen from gas molecules (e.g., methane, ethane, propane, ethylene, propylene, butane, carbon dioxide, nitrogen, butylene, and combinations thereof).
Type:
Application
Filed:
April 3, 2019
Publication date:
July 29, 2021
Applicants:
Dow Global Technologies LLC, Georgia Tech Research Corporation
Inventors:
Justin T. Vaughn, Wulin Qiu, William J. Koros, Liren Xu, Mark K. Brayden, Marcos V. Martinez
Abstract: Polyethylenimine coated polymeric beads comprising a polymer that comprises, based on the weight of the polymer, from 25% to 75% by weight of structural units of an acetoacetoxy or acetoacetamide functional monomer, and from 25% to 75% by weight of structural units of a polyvinyl monomer; the polyethylenimine having a number average molecular weight of 300 g/mol or more; the polyethylenimine coated polymeric beads having a specific surface area in the range of from 20 to 400 m2/g; a process of preparing the polyethylenimine coated polymeric beads; a gas filter device comprising the polyethylenimine coated polymeric beads as a filter medium; and a method of removing aldehydes from air containing aldehydes, comprising contacting the air with the polyethylenimine coated polymeric beads.
Abstract: Embodiments of polymer compositions and articles comprising such compositions contain at least one multimodal ethylene-based polymer having at least three ethylene-based components, wherein the multimodal ethylene-based polymer exhibits improved toughness.
Type:
Application
Filed:
December 19, 2018
Publication date:
July 29, 2021
Applicant:
Dow Global Technologies LLC
Inventors:
Carl N. Iverson, Amaldo T. Lorenzo, Yijian Lin, Mehmet Demirors, Didem Oner-Deliormanli, David T. Gillespie
Abstract: A process for separating hydrogen from a gas mixture having hydrogen and a larger gas molecule is comprised of flowing the gas mixture through a carbonized polyvinylidene chloride (PVDC) copolymer membrane having a hydrogen permeance in combination with a hydrogen/methane selectivity, wherein the combination of hydrogen permeance and hydrogen/methane selectivity is (i) at least 30 GPU hydrogen permeance and at least 200 hydrogen/methane selectivity or (ii) at least 10 GPU hydrogen permeance and at least 700 hydrogen/methane selectivity. The carbonized PVDC copolymer may be made by heating and restraining a polyvinylidene chloride copolymer film or hollow fiber having a thickness of 1 micrometer to 250 micrometers to a pretreatment temperature of 100° C. to 180° C. to form a pretreated polyvinylidene chloride copolymer film and then heating and restraining the pretreated polyvinylidene chloride copolymer film to a maximum pyrolysis temperature from 350° C. to 750° C.
Type:
Application
Filed:
April 15, 2021
Publication date:
July 29, 2021
Applicant:
Dow Global Technologies LLC
Inventors:
Junqiang Liu, Douglas E. Beyer, Janet M. Goss, Chan Han, Edward M. Calverley
Abstract: A carbonized PVDC copolymer useful for the separation of an olefin from its corresponding paraffin may be made by heating a polyvinylidene chloride copolymer film or hollow fiber having a thickness of 1 micrometer to 20 micrometers to a pretreatment temperature of 100° C. to 180° C. to form a pretreated polyvinylidene chloride copolymer film and then heating the pretreated polyvinylidene chloride copolymer film to a maximum pyrolysis temperature from 350° C. to 750° C. A process for separating an olefin from its corresponding paraffin in a gas mixture is comprised of flowing the gas mixture through the aforementioned carbonized polyvinylidene chloride (PVDC) copolymer to produce a permeate first stream having an increased concentration of the olefin and a second retentate stream having an increased concentration of its corresponding paraffin.
Type:
Application
Filed:
April 14, 2021
Publication date:
July 29, 2021
Applicant:
Dow Global Technologies LLC
Inventors:
Junqiang Liu, Janet M. Goss, Edward M. Calverley, Douglas E. Beyer
Abstract: A process to form an ethylene-based polymer in a reactor system, said process comprising at least the following steps: a) injecting a first initiator mixture into the tubular reactor at location L along the reactor, b) injecting a compressed make-up CTA system at the location L1, at a distance (L?L1) from 145*Dprehehater to 1000*Dpreheater, upstream from L, and wherein Dpreheater=the inner diameter of the pre-heater in meter (m); and wherein L1 is located in the preheater, and c) optionally, injecting one or more additional compressed make-up CTA system(s) into the preheater, at one or more location: LiLi+1, Ln (2?i and 2?n), upstream from L1, and each location is, independently, at a distance from 145*Dprehehater to 1000*Dpreheater, and wherein n equals the total number of injection locations of the make-up CTA system(s) injected into the preheater, upstream from L1, and wherein (L?L1) is less than each (L?Li), (L?Li+1), (L?Ln); and d) polymerizing a reaction mixture comprising at least ethylene, the first i
Abstract: A heterogeneous procatalyst includes a preformed heterogeneous procatalyst and a metal-ligand complex. The preformed heterogeneous procatalyst includes a titanium species and a magnesium chloride (MgCl2) support. The metal-ligand complex has a structural formula (L)aM(Y)m(XR2)b, where M is a metal cation; each L is a neutral ligand or (?O); each Y is a halide or (C1-C20)alkyl; each XR2 is an anionic ligand in which X is a heteroatom or a heteroatom-containing functional group and R2 is (C1-C20)hydrocarbyl or (C1-C20) heterohydrocarbyl; n is 0, 1, or 2; m is 0-4; and b is 1-6. The metal-ligand complex is overall charge neutral. The heterogeneous procatalyst exhibits improved average molecular weight capability. A catalyst system includes the heterogeneous procatalyst and a cocatalyst. Processes for producing the heterogeneous procatalyst and processes for producing ethylene-based polymers utilizing the heterogeneous procatalyst are also disclosed.
Type:
Application
Filed:
May 29, 2019
Publication date:
July 22, 2021
Applicant:
Dow Global Technologies LLC
Inventors:
Linfeng Chen, Mingzhe Yu, Mehmet Demirors, Andrew T. Heitsch, Jeffrey A. Sims, David Gordon Barton, Kurt F. Hirsekorn, Peter N. Nickias
Abstract: Embodiments are directed to a catalyst system comprising metal-ligand complexes and processes for polyolefin polymerization using the metal-ligand complex having the following structure, Formula (I), where X is selected from the group consisting of —(CH2)SiRX3.
Type:
Grant
Filed:
September 20, 2018
Date of Patent:
July 20, 2021
Assignee:
Dow Global Technologies LLC
Inventors:
Bryan D. Stubbert, Arkady L. Krasovskiy, Tulaza Vaidya, Jerzy Klosin, Edmund M. Carnahan, Philip P. Fontaine, Mari S. Rosen, David R. Wilson
Abstract: Embodiments are directed to a catalyst system comprising metal-ligand complexes and processes for polyolefin polymerization using the metal-ligand complex having the following structure:
Type:
Grant
Filed:
June 18, 2018
Date of Patent:
July 20, 2021
Assignee:
Dow Global Technologies LLC
Inventors:
Endre Szuromi, David D. Devore, Robert D. J. Froese, Arkady L. Krasovskiy, Lixin Sun, Kevin A. Frazier, Joseph S. Renny
Abstract: Embodiments are directed to a catalyst system comprising metal ligand complexes and processes for polyolefin polymerization using the metal ligand complex having the following structure: where each X is selected from the group consisting of —(CH2)SiRX3.
Type:
Grant
Filed:
September 19, 2018
Date of Patent:
July 20, 2021
Assignee:
Dow Global Technologies LLC
Inventors:
Arkady L. Krasovskiy, David R. Wilson, Bryan D. Stubbert, Tulaza Vaidya, Jerzy Klosin, Edmund M. Carnahan, Philip P. Fontaine, Mari S. Rosen
Abstract: A multilayer film including a core layer and two skin layers, wherein the core layer is positioned between the two skin layers, wherein the core layer includes a polyethylene composition including a high density polyethylene having a density of 0.930-0.965 g/cc and a melt index of 0.7-10.0 g/10 min, and wherein each skin layer independently includes a polypropylene composition including greater than 50 wt. %, based on the total weight of the polypropylene composition, of a propylene-based polymer.
Type:
Grant
Filed:
August 30, 2016
Date of Patent:
July 20, 2021
Assignees:
Dow Global Technologies LLC, Dow Quimica Mexicana S.A. de C.V.
Inventors:
Fabricio Arteaga Larios, Jacquelyn A. Degroot, Vivek Kalihari
Abstract: A crosslinkable surfactant useful for preparing an emulsion polymerization composition; the crosslinkable surfactant including (a) a crosslinkable functionality and a hydrophobic tail with a Tung oil derivative structure, and (b) a polyalkylene oxide or polyglycerin part as hydrophilic head; an emulsion polymerization process using the crosslinkable surfactant; an emulsion polymerization composition; and a process for preparing the emulsion polymerization composition.
Abstract: Disclosed is a fluorination method comprising providing a fluorinating reagent and a solvent to a reaction mixture; providing a compound having the formula Ar—X to the reaction mixture; wherein Ar is aryl, substituted aryl, heteroaryl or substituted heteroaryl, and X is Cl, Br, I or NO2, providing tetramethylammonium 2,6-dimethylphenolate to the reaction mixture; and reacting under conditions sufficient to provide a species having the formula Ar—F.
Type:
Grant
Filed:
July 13, 2017
Date of Patent:
July 13, 2021
Assignees:
Dow Global Technologies LLC, The Regents of the University of Michigan
Inventors:
Melanie S. Sanford, Megan A. Cismesia, Patrick S. Hanley, Douglas Bland