Patents Assigned to Dow Global Technologies
  • Patent number: 11878296
    Abstract: A process for separating a catalyst component from a catalyst-containing slurry by centrifugation including separating the catalyst component from the mother liquor of the catalyst-containing slurry using a stacked disc centrifuge equipped with an auto-discharging functionality. The solids discharge from the stacked disc centrifuge is enhanced by adding a washing solution to the bowl and the solids discharge chute of the stacked disc centrifuge.
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: January 23, 2024
    Assignee: Dow Global Technologies LLC
    Inventors: Mrunmayi Kumbhalkar, Wu Chen, Brian Murdoch, Haifeng Shi, Lin Zhao
  • Publication number: 20240017535
    Abstract: According to one or more embodiments presently disclosed herein, a multilayer structure may include a biaxially oriented film and a sealant layer. The biaxially oriented film may include at least 90% by weight of polypropylene. The sealant layer may be on the biaxially oriented polypropylene film. The sealant layer may include from 15 to 40 percent by weight of a low density polyethylene based on the total weight of the sealant layer. The sealant layer may additionally include from 60 to 85 percent by weight of a propylene-based plastomer based on the total weight of the sealant layer. The propylene-based plastomer may have a density of 0.890 g/cm3 or less and a melt flow rate (at 230° C. and 2.16 kg) of at least 8 g/10 minutes.
    Type: Application
    Filed: December 8, 2021
    Publication date: January 18, 2024
    Applicant: Dow Global Technologies LLC
    Inventor: Eva-Maria Kupsch
  • Patent number: 11873400
    Abstract: A composition comprising the following components: A) a metal stearate; B) a secondary alcohol ethoxylate of the formula C12-14H25-29O [CH2CH2O]xH, wherein x=7; C) a secondary alcohol ethoxylate of the formula C12-14H25-29O [CH2CH2O]xH, C wherein x=20; D) octanoic acid; E) sodium lauryl sulfate; F) a polydimethylsiloxane (PDMS); and G) water.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: January 16, 2024
    Assignees: Dow Global Technologies LLC, Rohm and Haas Company
    Inventors: Nicholas B. Schaffer, Kevin J. Bouck, Sarah E. Decato, Shrikant Dhodapkar, Intan M. Hamdan, Remi A. Trottier, Richard A. Lundgard
  • Patent number: 11873393
    Abstract: A bimodal ethylene-based polymer, including a high density fraction (HDF) from 3.0% to 25.0%, wherein the high density fraction is measured by crystallization elution fractionation (CEF) integration at temperatures from 93° C. to 119° C., an I10/I2 ratio from 5.5 to 7.5, wherein I2 is the melt index when measured according to ASTM D 1238 at a load of 2.16 kg and temperature of 190° C. and I10 is the melt index when measured according to ASTM D 1238 at a load of 10 kg and temperature of 190° C., and a short chain branching distribution (SCBD) less than or equal to 10° C., wherein the short chain branching distribution is measured by CEF full width at half height.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: January 16, 2024
    Assignee: Dow Global Technologies LLC
    Inventors: Kyle E. Hart, Mehmet Demirors, Timothy W. Gambrel, Philip P. Fontaine, Pradeep Jain
  • Patent number: 11873243
    Abstract: A method for inhibiting silica scale formation which treats aqueous systems containing silica with a bottle brush polymer. The bottle brush polymer includes a repeat unit obtained after polymerization of one or more anionic monomers, and a repeat unit obtained after polymerization of one or more polyoxoalkylene-containing monomers. The bottle brush polymer may further include a repeat unit obtained after polymerization of one or more nonionic monomers. The addition of the bottle brush polymer to the aqueous system results in the inhibition of silica scale.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: January 16, 2024
    Assignees: DOW GLOBAL TECHNOLOGIES LLC, ROHM AND HAAS COMPANY
    Inventors: Puspendu Deo, Graham P. Abramo, Kaylie L. Young, Somil Chandrakant Mehta
  • Patent number: 11873377
    Abstract: A blown film having a bimodal ethylene-based polymer including a high density fraction (HDF) from 3.0% to 25.0%, an I10/I2 ratio from 5.5 to 7.5, a short chain branching distribution (SCBD) less than or equal to 10 C, a zero shear viscosity ratio from 1.0 to 2.5, a density from 0.902 g/cc to 0.925 g/cc, and a melt index (I2) from 0.5 g/10 mins to 2.0 g/10 mins.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: January 16, 2024
    Assignee: Dow Global Technologies LLC
    Inventors: Kyle E. Hart, Mehmet Demirors, Timothy W. Gambrel, Philip P. Fontaine, Vivek Kalihari, Francis O. Olajide, Jr., Rajen M. Patel
  • Publication number: 20240010770
    Abstract: Processes of polymerizing olefin monomers.
    Type: Application
    Filed: February 5, 2021
    Publication date: January 11, 2024
    Applicant: Dow Global Technologies LLC
    Inventors: Philip P. Fontaine, David M. Pearson, Hien Q. Do, Johnathan E. Delorbe, Rafael Huacuja, Rhett A. Baillie
  • Publication number: 20240010771
    Abstract: Processes of polymerizing olefin monomers. The process includes reacting ethylene and optionally one or more olefin monomers in the presence of a catalyst system, wherein the catalyst system comprises: modified-hydrocarbyl methylaluminoxane having less than 50 mole percent AlRA1RB1RC1 based on the total moles of aluminum, where RA1, RB1, and RC1 are independently is linear (C1-C40)alkyl, branched (C1-C40)alkyl, or (C6-C40)aryl; and one or more metal-ligand complexes according to formula (I).
    Type: Application
    Filed: February 5, 2021
    Publication date: January 11, 2024
    Applicant: Dow Global Technologies LLC
    Inventors: Philip P. Fontaine, David M. Pearson, Hien Q. Do, Johnathan E. Delorbe, Rafael Huacuja, Rhett A. Baillie, Rongjuan Cong
  • Patent number: 11866524
    Abstract: Water-based pressure sensitive adhesive composition and methods of make the same are provided. The water-based pressure sensitive adhesive composition comprises at least one interpolymer dispersed within an aqueous medium, the interpolymer comprising at least one unsaturated monomer and at least one compound selected from a group consisting of at least one conjugated acid, at least one ester of a conjugated acid, and mixtures thereof.
    Type: Grant
    Filed: August 12, 2016
    Date of Patent: January 9, 2024
    Assignees: Rohm and Haas Company, Dow Global Technologies LLC
    Inventors: Jiguang Zhang, Miao Yang, Shaoguang Feng, Zhaohui Qu
  • Patent number: 11866530
    Abstract: The present disclosure provides a composition. The composition can be formed into a foam composition. In an embodiment, the composition includes a neat ethylene/propylene/nonconjugated polyene interpolymer. The neat ethylene/propylene/nonconjugated polyene interpolymer includes from greater than 6.0 wt % to 15.0 wt % nonconjugated polyene. The neat ethylene/propylene/nonconjugated polyene interpolymer has the following properties: (i) a molecular weight (Mw) from 240,000 to 270,000; (ii) a Mooney viscosity (ML (1+4), 125° C.) from 85 to 95; (iii) a rheology ratio (RR) from 35 to 65; (iv) a Mw/Mn from 2.2 to 3.5; and (v) Mw<1389.6 [g/mole] MV+140,000 g/mol wherein Mw is the weight average molecular weight and MV is the Mooney Viscosity (ML 1+4, 125° C.). MV is the Mooney Viscosity (ML 1+4, 125° C.), and Mw is the weight average molecular weight, as determined by conventional GPC.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: January 9, 2024
    Assignee: Dow Global Technologies LLC
    Inventors: Xiaosong Wu, Colin Li Pi Shan, Juan C. Tuberquia, Tao Han, Guangming Li
  • Patent number: 11866567
    Abstract: The present disclosure provides a foam bead. The foam bead is formed from a composition containing (A) a silane-functionalized ethylene/?-olefin multi-block interpolymer. The present disclosure also provides a sintered foam structure. The sintered foam structure is formed from foam beads that are formed from a composition containing (A) a silane-functionalized ethylene/?-olefin multi-block interpolymer.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: January 9, 2024
    Assignee: Dow Global Technologies LLC
    Inventors: Haiyang Yu, Jozef J I Van Dun, Yunfeng Yang
  • Patent number: 11858242
    Abstract: Recyclable, all-polyethylene laminate film structures suitable for use in a flexible packaging are disclosed. The structures comprise a film layer consisting essentially of an ethylene-based polymer and a barrier adhesive layer disposed on a surface of the film layer, wherein the structure has an oxygen transmission rate not greater than 100 O2/m2/day, measured according to ASTM Method D3985. Recyclable, all-polyethylene laminate film structures suitable for use in a flexible packaging are disclosed comprising (A) a sealant film layer consisting essentially of an ethylene-based polymer, (B) an intermediate film layer consisting essentially of an ethylene-based polymer, (C) a structural film layer consisting essentially of an ethylene-based polymer, and (D) a barrier adhesive layer, wherein the recyclable, all-polyethylene laminate film structure has an oxygen transmission rate not greater than 100 O2/m2/day, measured according to ASTM Method D3985.
    Type: Grant
    Filed: June 29, 2022
    Date of Patent: January 2, 2024
    Assignee: Dow Global Technologies LLC
    Inventors: Kalyan Sehanobish, Amira A. Marine, Daniele Vinci
  • Patent number: 11859031
    Abstract: A compound of formula (1) as drawn herein, wherein M is a Group 4 metal and each R independently is a silicon-free organic solubilizing group. A method of synthesizing the compound (1). A solution of compound (1) in alkane solvent. A catalyst system comprising or made from compound (1) and an activator. A method of polymerizing an olefin monomer with the catalyst system.
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: January 2, 2024
    Assignee: Dow Global Technologies LLC
    Inventors: Bethany M. Neilson, Roger L Kuhlman, Ian M. Munro, John F. Szul
  • Patent number: 11858243
    Abstract: The present invention provides uniaxially oriented films and packages formed from such films. In one aspect, a uniaxially oriented film includes (a) a first layer including (i) a first composition including an ethylene-based polymer prepared in the presence of a single-site catalyst, wherein the first composition has a density of 0.935 g/cm3 to 0.965 g/cm3, a melt index (12) of 0.5 to 6 g/10 minutes, and a MWD of 6.0 or less, and (ii) a Ziegler-Natta catalyzed ultra low density polyethylene having a density of 0.880 g/cm3 to 0.912 g/cm3, a melt index (12) of 0.5 to 6 g/10 minutes, and a MWD of 6.0 or less, (b) a second layer including at least one polyolefin, and (c) at least one inner layer between the first layer and the second layer including a high density polyethylene. The film is oriented in the machine direction at a draw ratio of between 4:1 and 10:1, and can exhibit a machine direction 2% secant modulus of 85,000 psi or more when measured as per ASTM D882.
    Type: Grant
    Filed: November 23, 2021
    Date of Patent: January 2, 2024
    Assignee: DOW GLOBAL TECHNOLOGIES LLC
    Inventor: Felipe Martinez Barreneche
  • Patent number: 11862300
    Abstract: Chemical formulations for chemical products can be represented by digital formulation graphs for use in machine learning models. The digital formulation graphs can be input to graph-based algorithms such as graph neural networks to produce a feature vector, which is a denser description of the chemical product than the digital formulation graph. The feature vector can be input to a supervised machine learning model to predict one or more attribute values of the chemical product that would be produced by the formulation without actually having to go through the production process. The feature vector can be input to an unsupervised machine learning model trained to compare chemical products based on feature vectors of the chemical products. The unsupervised machine learning model can recommend a substitute chemical product based on the comparison.
    Type: Grant
    Filed: February 27, 2023
    Date of Patent: January 2, 2024
    Assignee: Dow Global Technologies LLC
    Inventors: Alix Schmidt, Ian Clark
  • Patent number: 11857948
    Abstract: A packing material for chromatography, the packing material comprising coated particles, wherein the coated particles comprise non-porous particles and a portion of the surface area of the non-porous particles is coated with a coating composition comprising graphene and/or graphene oxide.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: January 2, 2024
    Assignee: Dow Global Technologies LLC
    Inventors: Rongjuan Cong, Albert Parrott, Charles Michael Cheatham, Janet Goss
  • Patent number: 11857935
    Abstract: A heterogeneous procatalyst includes a titanium species, a magnesium chloride component, and a chlorinating agent having a structure A(Cl)x(R1)3-x, where A is aluminum or boron, R1 is a (C1-C30) hydrocarbyl, and x is 1, 2, or 3. The magnesium chloride component may be thermally treated at a temperature greater than 100 C for at least 30 minutes before or after introduction of the chlorinating agent and titanium species to the heterogeneous procatalyst. The heterogeneous procatalyst having the thermally treated magnesium chloride exhibits improved average molecular weight capability. Processes for producing the heterogeneous procatalyst and processes for producing ethylene-based polymers utilizing the heterogeneous procatalyst are also disclosed.
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: January 2, 2024
    Assignee: Dow Global Technologies LLC
    Inventors: Mingzhe Yu, David Gordon Barton, Kurt F. Hirsekorn, Sadeka Onam, Peter N. Nickias, Andrew T. Heitsch, Thomas H. Peterson
  • Patent number: 11851603
    Abstract: A highly thermally conductive composition is provided, such composition comprising: (A) An organopolysiloxane composition; (B) a filler treating agent; (C) a thermal stabilizer; and (D) thermally conductive filler mixture, comprising: (D-1) a small-particulate thermally conductive filler having a mean size of up to 3 ?m, (D-2) spherical aluminum nitride having a mean size of from 50 to 150 ?m, (D-3) boron nitride having a mean size of from 20 to 200 ?m.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: December 26, 2023
    Assignees: DOW SILICONES CORPORATION, DOW GLOBAL TECHNOLOGIES LLC (DGTL)
    Inventors: Xiaolian Hu, Jiguang Zhang, Yan Zheng, Hongyu Chen, Chen Chen, Dorab Bhagwagar, Darren Hansen
  • Patent number: 11851637
    Abstract: The invention is directed to adhesive remover compositions and methods of their use. The adhesive remover compositions generally comprise a glycol ether solvent system comprising an aliphatic glycol ether, an aromatic glycol ether, a hydrophobic glycol ether, and a hydrophilic glycol ether, and a surfactant system. In further embodiment of the invention, the surfactant system may comprise three surfactants. In another aspect of the invention, the composition effectively removes medical adhesives from healthcare textiles.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: December 26, 2023
    Assignees: ECOLAB USA INC., DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Carrie Armstrong, Eddie D. Sowle, Molly Busby
  • Patent number: 11851539
    Abstract: A film structure including: (a) at least one functionalized film layer, wherein the at least one film layer comprises a polar-reactive group polyolefin layer used as an internal layer in the film structure; and (b) a lamination adhesive composition present on, and in contact with, a least a portion of a surface of the internal layer; wherein the green tack value of the adhesive composition is greater than 0.772 Newtons/centimeter; a laminate including the above film structure bonded to a substrate layer; a process for producing the film structure; a process for producing the laminate; and a laminated article made from the above laminate.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: December 26, 2023
    Assignees: Dow Global Technologies LLC, Dow Quimica de Colombia SA, Rohm and Haas Company
    Inventors: Felipe Martinez Barreneche, Elkin David Cardona Jimenez, Juan Carlos Casarrubias, Jie Wu