Abstract: The instant invention is a polyethylene composition, method of producing the same, articles made therefrom, and method of making the same. The polyethylene composition according to the instant invention comprises (1) less than or equal to 100 percent by weight of the units derived from ethylene; and (2) less than 15 percent by weight of units derived from one or more ?-olefin comonomers. The polyethylene composition according the instant invention has a density in the range of 0.907 to 0.975 g/cm3, a molecular weight distribution (Mw/Mn) in the range of 1.70 to 3.62, a melt index (I2) in the range of 2 to 1000 g/10 minutes, a molecular weight distribution (Mz/Mw) in the range of less than 2.5, and a vinyl unsaturation of less than 0.06 vinyls per one thousand carbon atoms present in the backbone of the composition.
Type:
Grant
Filed:
June 12, 2013
Date of Patent:
November 10, 2015
Assignee:
Dow Global Technologies LLC
Inventors:
William J. Michie, Jr., Mark B. Davis, Nathan J. Wiker, Debra R. Wilson, Peter Schindler, John W. Garnett, IV
Abstract: Disclosed are a process and an apparatus for using an olefin as an azeotropic entrainer to isolate a target organic compound from a waste stream. The olefin may be, for example, 1-decene, 1-dodecene, or 1-tetradecene. The target organic compound may be 1,3-dichloro-2-propanol in waste stream comprising a 2,2?-oxybis(1-chloropropane).
Type:
Grant
Filed:
December 7, 2011
Date of Patent:
November 10, 2015
Assignee:
Dow Global Technologies LLC
Inventors:
Mahesh Ratnakar Sawant, Edward D. Daugs, Mark R. Smit
Abstract: The present invention relates to a redispersible powder composition for use in the preparation of dry mortar formulations, especially of cementitious bound tile adhesives (CBTA). The invention further relates to a dry mortar formulation comprising said redispersible powder composition. Furthermore, the invention is directed to a method of increasing the open time of a dry mortar formulation without deteriorating the mechanical strength of the cured dry mortar formulation.
Abstract: The instant invention is a high-density polyethylene composition, method of producing the same, articles made therefrom, and method of making such articles. The high-density polyethylene composition of the instant invention includes a first component, and a second component. The first component is a high molecular weight ethylene alpha-olefin copolymer having a density in the range of 0.915 to 0.940 g/cm3, and a melt index (I21.6) in the range of 0.5 to 10 g/10 minutes. The second component is a low molecular weight ethylene polymer having a density in the range of 0.965 to 0.980 g/cm3, and a melt index (I2) in the range of 50 to 1500 g/10 minutes. The high-density polyethylene composition has a melt index (I2) of at least 1, a density in the range of 0.950 to 0.960 g/cm3, and g? of 1.
Type:
Grant
Filed:
March 12, 2014
Date of Patent:
November 10, 2015
Assignee:
Dow Global Technologies LLC
Inventors:
William J. Michie, Jr., Thomas W. Kay, Stephanie M. Whited, Dale M. Elley-Bristow, David T. Gillespie, Lonnie G. Hazlitt
Abstract: Polyisocyanurate foam composition, articles comprising the composition and a method of making the composition are described. The polyisocyanurate foam composition comprises the reaction product of a polyisocyanate compound; and a first polyester polyol comprising the residue of orthophthalic acid; a second polyester polyol comprising the residue of terephthalic acid; at least one polyether polyol having a functionality of at least 3 and a hydroxyl number greater than 200; and a physical blowing agent, wherein the isocyanate index is greater than 250.
Abstract: Structural adhesives are prepared from a chain extended elastomeric toughener that contains urethane and/or urea groups, and have terminal isocyanate groups that are capped with a phenol, a polyphenol or an aminophenol compound. The adhesives have very good storage stability and cure to form cured adhesives that have good lap shear and impact peel strengths.
Type:
Grant
Filed:
November 30, 2011
Date of Patent:
November 10, 2015
Assignee:
Dow Global Technologies LLC
Inventors:
Andreas Lutz, Daniel Schneider, Christof Braendli, Irene Maeder
Abstract: This invention provides intumescent, halogen-free, polymeric, silicon-phosphorus-nitrogen (SPN) flame retardant, a process for their preparation, and systems, compositions and articles into which they are incorporated. The inventive intumescent, halogen-free, SPN polymer compositions afford good flame retardant performance at a lower loading compared to conventional phosphorus and nitrogen based intumescent flame retardant compositions.
Type:
Grant
Filed:
December 2, 2010
Date of Patent:
November 3, 2015
Assignee:
Dow Global Technologies LLC
Inventors:
Journey L. Zhu, Given Jing Chen, Jinder Jow, Kenny Chun Hui Su, Ping Wei, Chen Wang
Abstract: The invention provides a composition comprising a blend, which comprises a high molecular weight ethylene-based polymer, and a low molecular weight ethylene-based polymer, and wherein the high molecular weight ethylene-based polymer has a density less than, or equal to, 0.955 g/cm3, and wherein the blend has a high load melt index (I21) greater than, or equal to, 15 g/10 min, and wherein the blend has a molecular weight distribution (Mw/Mn) greater than, or equal to, 15. The invention also provides a composition comprising a blend, which comprises a high molecular weight ethylene-based polymer and a low molecular weight ethylene-based polymer, and wherein the high molecular weight ethylene-based polymer component has a density less than, or equal to, 0.945 g/cm3, and a melt index (I2) less than, or equal to, 0.
Type:
Grant
Filed:
December 18, 2008
Date of Patent:
November 3, 2015
Assignee:
Dow Global Technologies LLC
Inventors:
Mridula (Babli) Kapur, Robert J. Jorgensen, Burkhard E. Wagner, William J. Michie, Jr.
Abstract: A process for the telomerization of butadiene comprises reacting 1,3-butadiene and an alkanol, in the presence of a catalyst promoter and an alkoxydimerization catalyst comprising a Group VIII transition metal and a triarylphosphine ligand, which includes one phenyl that is mono-ortho-alkoxy substituted and at least one other phenyl including at least one substituent that withdraws electrons from the phosphorus atom. The product includes an alkoxy-substituted octadiene, which may then be used to produce 1-octene. The catalyst shows improved stability, activity and selectivity toward the alkoxy-substituted octadiene.
Type:
Grant
Filed:
December 14, 2011
Date of Patent:
November 3, 2015
Assignee:
Dow Global Technologies LLC
Inventors:
John R. Briggs, Jasson T. Patton, Daryoosh Beigzadeh, Peter M. Margl, Henk Hagen, Sonet Vermaire-Louw
Abstract: An improved ceramic honeycomb structure is comprised of at least two separate smaller ceramic honeycombs that have been adhered together by a cement layer comprised of a cement layer has at least two regions of differing porosity or cement layer where the ratio of toughness/Young's modulus is at least about 0.1 MPa·m1/2/GPa.
Type:
Grant
Filed:
October 27, 2010
Date of Patent:
November 3, 2015
Assignee:
Dow Global Technologies LLC
Inventors:
Aleksander J. Pyzik, Nicholas M. Shinkel, Arthur R. Prunier, Jr., Janet M. Goss, Kwanho Yang
Abstract: The present invention appreciates that compounds comprising ester linkages and nitrogen-containing moieties that are at least divalent (e.g., urea, urethane, amide, etc.) can be crosslinked with azides to form membranes that are resistant to CO2 plasticization, that are selective for acid gases relative to nonpolar gases such as hydrocarbons, and that have high acid gas flux characteristics. The resultant membranes have stable structure and stable separation properties at higher temperatures and pressures. The membranes are compatible with many industrial processes in which polar gases are separated from nopolar gases. In an exemplary mode of practice, the membranes can be used to separate acid gases from the hydrocarbon gases in natural or non-acid gas components of flue gas mixtures (e.g., N2, O2, etc.).
Type:
Grant
Filed:
September 20, 2012
Date of Patent:
November 3, 2015
Assignee:
Dow Global Technologies LLC
Inventors:
Scott T. Matteucci, Clark H. Cummins, William J. Kruper, Harry Craig Silvis
Abstract: The present invention provides personal care formulations containing silicone modified polyolefins and having improved sensory feel, as well as being non-tacky and easily spreadable. The present invention also provides a method for treating body surfaces such as skin, hair, nails, etc., by applying the aforesaid personal care formulations externally to such a surface. The present invention also provides a method for improving the sensory feel of personal care formulations by including one or more silicone modified polyolefins in the formulations.
Type:
Application
Filed:
November 22, 2013
Publication date:
October 29, 2015
Applicant:
Dow Global Technologies LLC
Inventors:
Thomas P. Clark, Vivek Kalihari, Nahrain E. Kamber, John W. Kramer, Xiaodong Lu, Ying O'connor, Thomas H. Peterson, Curtis Schwartz, Qichun Wan
Abstract: Embodiments of the present disclosure include a hardener compound for curing with an epoxy resin, where the hardener compound includes a copolymer having a first constitutional unit of the formula (I), a second constitutional unit of the formula (II), and a third constitutional unit of the formula (III), where each q, n and m is independently a positive integer; each b is independently selected from the group of 6, 8, 10 and 12; each Y is independently an organic group; and each R is independently selected from the group of a hydrogen, an organic group and a halogen. Embodiments of the present disclosure include an epoxy system that includes the hardener compound and an epoxy resin.
Type:
Application
Filed:
December 12, 2012
Publication date:
October 29, 2015
Applicant:
Dow Global Technologies LLC
Inventors:
Michael J. Mullins, Chao Zhang, Jia wen Xiong, Hongyu Chen, Michael D. Read, Nan-Rong Chiou
Abstract: An epoxy composition that includes an epoxy-terminated prepolymer, an alkanolamine hardener having at least one hydroxyl group and an organometallic compound, where amine groups of the alkanolamine hardener react with epoxy groups of the epoxy-terminated prepolymer in a stoichiometric ratio to form a cured epoxy composition. The epoxy-terminated prepolymer is formed from a reaction product of an amine terminated polymeric polyol and a molar excess of epoxy groups in an epoxy monomer, relative to a molar amount of amine groups in the amine terminated polymeric polyol.
Abstract: An electronic device module comprises: A. At least one electronic device, e.g., a solar cell, and B. A polymeric material in intimate contact with at least one surface of the electronic device, the polymeric material comprising an ethylene multi-block copolymer. Typically, the polyolefin material is an ethylene multi-block copolymer with a density of less than about 0.90 grams per cubic centimeter (g/cc). The polymeric material can fully encapsulate the electronic device, or it can be laminated to one face surface of the device. Optionally, the polymeric material can further comprise a scorch inhibitor, and the copolymer can remain uncrosslinked or it can be crosslinked.
Type:
Grant
Filed:
November 2, 2012
Date of Patent:
October 27, 2015
Assignee:
Dow Global Technologies LLC
Inventors:
Rajen M. Patel, Shaofu Wu, Mark T. Bernius, Mohamed Esseghir, Robert L. McGee, Michael H. Mazor, John A. Naumovitz
Abstract: Embodiments of the present disclosure are directed towards coating compositions comprising from 50 to 85 percent of an aqueous dispersion based on a total weight of the coating composition, an abrasion reducing composition, a solvent, a basic water composition, and a crosslinker.
Type:
Grant
Filed:
January 8, 2013
Date of Patent:
October 27, 2015
Assignee:
Dow Global Technologies LLC
Inventors:
Jeffrey Wilbur, Dharakumar Metla, Denise Lindenmuth, Ray Drumright, David L. Malotky, Bernhard Kainz
Abstract: The present invention relates to an improved process for making mono- and di-alkoxylated piperazine compounds especially dihydroxyethylpiperazine. The improvement comprises the addition of an acid to the piperazine compound prior to the addition of an alkylene oxide to a reactor wherein the alkoxylated piperazine compound is prepared. Said improvement reduces the concentration of undesirable glycol ether byproducts which contribute undesirable color and foaming of the alkoxylated piperazine compounds.
Type:
Grant
Filed:
August 24, 2012
Date of Patent:
October 27, 2015
Assignee:
Dow Global Technologies LLC
Inventors:
Christophe R. Laroche, Daniel A. Aguilar
Abstract: The present invention appreciates that compounds comprising nitrogen-containing moieties that are at least divalent (e.g., urea, urethane, amide, etc.) can be reacted with azides using at least radiation energy to initiate the reaction between at least a portion of the compounds and the azides to form membranes that have surprisingly high selectivities for acid gases relative to nonpolar gases such as hydrocarbons. The membranes are also resistant to CO2 plasticization and have high acid gas flux characteristics. The resultant membranes can be extremely thin (e.g., 10 micrometers or less), which promotes high permeability for the acid gas and can translate into high productivity on a scaled-up, industrial level.
Type:
Grant
Filed:
September 18, 2013
Date of Patent:
October 27, 2015
Assignee:
Dow Global Technologies LLC
Inventors:
Scott T. Matteucci, Junqiang Liu, Ahmad Madkour, William J. Harris
Abstract: The present invention provides water redispersible polymer powder (RDP) compositions that perform well even when redispersibility is fair comprising carboxyl group containing multi-stage acrylic copolymers having an alkali-soluble resin outer stage and one or more inner stage acrylic (co)polymer having a glass transition temperature (Tg) of from ?40 to 50° C., one or more nucleating agent having a boiling point of 150° C. to 500° C., and a water solubility of 3.5% or less, preferably, an alkyl isobutyrate and a branched alkyl isobutyrate, and one or more colloidal stabilizer. Also provided are dry mix cement tile adhesive compositions comprising the water redispersible polymer powder an ordinary Portland cement, an alumina rich cement with an alumina content of from 30 wt. % to 85 wt. %, and calcium sulfate. The invention enables a broad range of the claimed acrylic polymers in useful RDPs.
Type:
Grant
Filed:
March 5, 2013
Date of Patent:
October 27, 2015
Assignees:
Dow Global Technologies LLC, Rohm and Haas Company