Abstract: A device 10 withdraws a breathing gas stream (A) from a ventilation system (B) and transports the breathing gas stream (A) to a gas analysis system (G). The device 10 has a tubular configuration with an inner side (41) and with an outer side (42) and includes two tube sections (11, 11?) and a drying stage (12, 14, 22) with an inner side (43, 43?) and with an outer side (44, 44?), and at least one liquid storage device (13, 21). The drying stage (12, 14, 22) includes a gas-tight and moisture-permeable material that transports moisture from the inner side (43, 43?) of the drying stage (12, 14, 22) through the gas-tight and moisture-permeable material to the outer side (42) of the tubular device (10). The drying stage (12, 14, 22) and/or the liquid storage device (13, 21) is arranged at least partially between the two tube sections (11, 11?).
Type:
Grant
Filed:
October 5, 2015
Date of Patent:
July 14, 2020
Assignee:
Drägerwerk AG & Co. KGaA
Inventors:
Hans-Ullrich Hansmann, Andreas Hengstenberg, Uwe Kühn, Gerd Peter, Michael Riecke
Abstract: A medical device, for example, an anesthesia apparatus or ventilator, including a hot wire sensor (10); a hot wire sensor (10) and a hot wire module (14) for a hot wire sensor (10) are provided. A first hot wire and a second hot wire (26, 28), namely, a measuring wire (26) and a compensation wire (28), are connectable to the hot wire sensor (10), for example, in the form of a hot wire module (14), in an electrically conductive manner. A first contact pair (52, 54) is associated with the measuring wire (26) for contacting same and a second contact pair (56, 58) is associated with the compensation wire (28) for contacting same. The contacts of the second contact pair (56, 58) are configured as leading contacts in relation to at least one of the contacts of the first contact pair (52, 54).
Type:
Grant
Filed:
September 19, 2017
Date of Patent:
July 14, 2020
Assignee:
DRÄGERWERK AG & CO. KGAA
Inventors:
Ralf Heesch, Bernd Kellner, Henning Gerder, Thomas Reßing, Andreas Timmann
Abstract: A control device, controlling an alarm output, includes a data network interface, with a signaling interface for outputting a control signal indicating a request for an acoustic and/or optical alarm signal a memory unit and a processor. The data network interface is configured to receive a group message indicating a sender identity and a presence of an alarm state. The memory unit provides a first data set, which indicates a list with potential sender identities, as well as further a second data set, which indicates one or more alarm output time periods. The processor is configured to operate a timekeeping function, and to output the control signal via the signaling interface as a function of an agreement between the sender identity with one of potential sender identities, and as a function of a comparison of a current value of the timekeeping function with data of the second data set.
Type:
Grant
Filed:
January 6, 2020
Date of Patent:
July 14, 2020
Assignee:
DRÄGERWERK AG & CO. KGAA
Inventors:
Stefan Schlichting, Alexander Loose, Peter Haase
Abstract: A ventilator or anesthesia device and method create a reference state and record a measured value as a reference value. A gas delivery unit is activated after the ending of the reference state to build up pressure in a breathing circuit. A comparison measured value is determined with a pressure or flow sensor. A deviation of the measured value from the reference value in relation to a predefined or predefinable expected value is monitored based on the comparison. A warning message is issued depending on a result of the comparison. A drop in pressure in the breathing circuit is caused after the recording of the comparison measured value and a further comparison measured value is recorded following the drop in pressure. A deviation of the further comparison measured value from the reference value leads to a further warning message when the deviation does not correspond to the further expected value.
Type:
Grant
Filed:
May 19, 2016
Date of Patent:
July 7, 2020
Assignee:
DRÄGERWERK AG & CO. KGAA
Inventors:
Ralf Heesch, Robert Schmid, Jonas Börner
Abstract: A respiration device (1) supports cardio-pulmonary resuscitation (CPR) and a method for operating a respiration device (1) supports cardio-pulmonary resuscitation (CPR). The respiration device (1) has a control and regulation unit (7) in order to actuate an expiratory metering unit (3), and an inspiratory metering unit (2) such that, in a first phase, a current value of pressure is increased relative to a first pre-defined value (16) and such that, in a second phase, the current value of the pressure is reduced relative to the first pre-defined value (16).
Abstract: A gas sensor for the detection of gases and vapors in air is particularly for the detection of anesthetic gases. A method for the detection and for the monitoring of such gases is also provided including detecting anesthetic gases with the gas sensor.
Type:
Grant
Filed:
April 11, 2017
Date of Patent:
June 23, 2020
Assignee:
DRÄGERWERK AG & CO. KGAA
Inventors:
Ernst-Günter Scharmer, Wolfgang Bäther, Livio Fornasiero, Christoph Marquardt, Günter Steppan
Abstract: An apparatus for supplying breathing air to a person includes a rebreathing system arranged in the air supply circuit, which removes CO2 at least in part present in the person's expiration air with a CO2 absorber, and treats the expiration air to supply treated air to the person again as inhalation air. The apparatus includes a condensate collection container (9) collecting water forming in the air supply circuit. The condensate collection container (9) is arranged at least in part below a reaction zone (17) of the CO2 absorber (1). At least one heat exchanger (10, 14) is provided in the CO2 absorber, via which heat from the air, which flows through the CO2 absorber and is heated as a result of the exothermic CO2 absorption reaction occurring in the reaction zone of the CO2 absorber, is dissipated.
Abstract: A testing device (1) is configured for testing a gas guide element (3). A control unit (70) carries out a sequence of steps with two operating states. A test gas (91) is delivered by a pumping device (7) through the gas guide element (3) to a remotely located measuring location (80) and is subsequently delivered from the remotely located measuring location (80) to the gas sensor system (5). Measured values (77) are detected and analyzed during the delivery from the remotely located measuring location (80) to the gas sensor system (5) by a sensor (6, 90), which indicates a state of flow in the gas guide element (3) or an operating state of the pumping device (7). Changes occurring in the measured values (77) during the delivery from the remotely located measuring location (80) to the gas sensor system (5) indicate the operational capability of the gas guide element (3).
Abstract: An apparatus includes a base component having a center axis and at least two index positions. The apparatus also includes a rotational component coupled to the base component. The rotational component is configured to circularly maneuver about the center axis between the at least two index positions. A docking receptacle of the apparatus is coupled to the rotational component and is configured to receive a monitor having an electronic visual display. The apparatus also includes a handle configured to facilitate maneuvering of the rotational component.
Type:
Grant
Filed:
December 18, 2018
Date of Patent:
May 12, 2020
Assignee:
DRÄGERWERK AG & CO. KGAA
Inventors:
Juan Pablo Eslava, Zachary K. Hennings, Peter Andrew Lund
Abstract: A device (4) aligns and connects a housing hood (3) to a housing (2). The device (4) has a first connecting piece (5) and a second connecting piece (6). The first connecting piece (5) has a clamp bearing element (51) and the second connecting piece (6) has a lamella element (61). The lamella element (61) is arranged movably along the clamp bearing element (51). The device (4) has a clamping element (7) for clearance-free clamping the lamella element (61) with the clamp bearing element (51). An alignment of the hood (3) on a housing (2) can be carried out simply and rapidly and requires only weak clamping forces.
Type:
Grant
Filed:
May 26, 2017
Date of Patent:
April 28, 2020
Assignee:
Drägerwerk AG & Co. KGaA
Inventors:
Markus Hampe, Robert Lischinski, Tjeerd Jan Pieter Gerbranda, Eduard Engelsman, Danker Kemper
Abstract: A thermotherapy device (1) includes a pivotable wall (2) and a pivoting device (3). The pivoting device (3) has a pivoting axis section (31) connected to the thermotherapy device. A locking element (32) is connected to the pivotable wall (2) and is mounted movably radially to the pivoting axis section (31) and pivotably about the pivoting axis section (31). A blocking element (33) and a holding module (34) for the blocking element (33) are provided. A contact element (35) is permanently connected to the locking element (32) for contacting the blocking element (33). The holding module (34) pushes the blocking element (33) between the pivoting axis section (31) and the contact element (35) when the locking element (32) is moved from a locked position, defined by a first distance to the pivoting axis section (31), into an unlocked position, defined by a second distance to the pivoting axis section (31).
Type:
Grant
Filed:
May 24, 2017
Date of Patent:
April 14, 2020
Assignee:
DRÄGERWERK AG & CO. KGAA
Inventors:
Markus Hampe, Tjeerd Jan Pieter Gerbranda, Eduard Engelsman, Danker Kemper, Jeroen Oomen
Abstract: A breathing gas-carrying patient connection (2) for the artificial respiration of a patient (1) by an anesthesia apparatus or respirator (3) with one or more sensors (9, 10, 11) for detecting patient-relevant measured variables and with a telemetric transmission of the sensor data from the patient connection (2) to a machine-side connection element (13) for the patient connection (2), wherein the telemetric transmission of the sensor data is designed for wireless bidirectional communication between the patient connection (2) and the connection element (13), makes possible the reliable transmission of data into the machine-side connection element (13).
Abstract: A great device (10) processes and visualizes electrical impedance tomography (EIT) data (3) of at least one region of the lungs for determining and visualizing regional properties of the lungs of a living being. The EIT data (3) are obtained from an electrical impedance tomography apparatus (30). The device makes it possible to visualize regional properties of the lungs or of regions of the lungs in terms of hyperdistension or collapse.
Abstract: A patient monitoring apparatus and method is provided. A plurality of moving average filters each receive a signal sensed from a patient and generates an output signal including a respective cutoff frequency. An extraction processor is coupled to receive the sensed signal and output signals from each moving average filters. The extraction processor determines at least one feature associated with the sensed signal based on at least one of the sensed signal and the output signals from each moving average filter and generates a feature signal including data representative of the determined at least one feature. A classification processor identifies a position of artifacts within the sensed signal based on the feature signal and generates a signal identifying the position of the artifacts.
Abstract: Methods and apparatuses are provided for neutral drive feedback loop compensation of detected electrosurgical unit signals. An apparatus includes an electrosurgery unit (ESU) signal detection circuit, a compensation switch, and an ESU filter switch. Both switches activate based on an output of the ESU signal detection circuit. A neutral drive feedback loop circuit is configured to compensate for a phase change characteristic of an ESU filter circuit.
Abstract: A control device, controlling an alarm output, includes a data network interface, with a signaling interface for outputting a control signal indicating a request for an acoustic and/or optical alarm signal a memory unit and a processor. The data network interface is configured to receive a group message indicating a sender identity and a presence of an alarm state. The memory unit provides a first data set, which indicates a list with potential sender identities, as well as further a second data set, which indicates one or more alarm output time periods. The processor is configured to operate a timekeeping function, and to output the control signal via the signaling interface as a function of an agreement between the sender identity with one of potential sender identities, and as a function of a comparison of a current value of the timekeeping function with data of the second data set.
Type:
Grant
Filed:
December 16, 2016
Date of Patent:
February 18, 2020
Assignee:
Drägerwerk AG & Co. KGaA
Inventors:
Stefan Schlichting, Alexander Loose, Peter Haase
Abstract: A device for detecting electric potentials of the body of a patient has measuring electrode inputs (Y1, . . . , Yn) connected with and a plurality of outputs (A1, . . . , An) via amplifiers (Op1, . . . , Opn). A summing unit (13) is connected with the outputs and outputs a mean value of the signals (E1, . . . , En) output by the amplifiers. Common mode signals are removed from the signals (E1, . . . , En) by a subtracting unit (19) which subtracts the output of the summing unit, amplified by an amplification factor (1/?), from at least a portion of the output of the subtracting unit. The output of the subtracting unit is connected with the inputs of the amplifiers. The subtracting unit amplification factor (1/?) and an amplification (??) of the amplifiers for the output of the subtracting unit are adapted, such that the reciprocal value of the amplification factor (1/?) corresponds to the amplifiers amplification (??).
Abstract: A system includes a monitor mount and first detachably secured to the monitor mount by the second coupling, (ii) detachably secure the first monitor by the third coupling, and (iii) surround at least a portion of the first electronic visual display when the first monitor is secured to the second monitor.
Abstract: A carbon dioxide absorber for a rebreathing system can be connected to a connection head of the rebreathing system in a simple manner. A centering device (43, 44, 45, 46), provided in the area of a guide plate (40) of the absorber (4), can be caused to mesh with centering pins pointing in the direction of the absorber from the connection head.
Type:
Grant
Filed:
September 22, 2017
Date of Patent:
May 19, 2020
Assignee:
Drägerwerk AG & Co. KGaA
Inventors:
Ahmet Türker, Grigory Kholtchanski, Sven Pasdzior, Robert Lischinski, Dirk-Stefan Reichert