Patents Assigned to Drexel University
-
Publication number: 20240333277Abstract: Solid-state circuit breakers (SSCBs) have been witnessing an impressive progress with the aid of wide bandgap (WBG) devices such as silicon carbide (SiC) MOSFETs. Along with obtaining high efficiency as the result of low on-state resistance, response times have been gaining remarkable achievements in microseconds range. Not only that, the reported successes in control and gate drivers design and incorporating fault detection/location techniques in SSCBs are promising. A MOV-resistive capacitive switch (MOV-RCS) snubber for solid state circuit breakers addresses the following: 1) the MOV degradation issue in DCCBs is solved, 2) the maximum allowable DC bus voltage on DCCBs is extended. The solid state circuit breaker and an active clamping snubber includes a first circuit including a fault current bypass based solid state breaker for low voltage direct current systems.Type: ApplicationFiled: June 24, 2022Publication date: October 3, 2024Applicant: Drexel UniversityInventors: Fei Lu, Hua Zhang, Reza Kheirollahi
-
Patent number: 12098469Abstract: The present disclosure relates to a composition that includes a solid, a first layer of an ionic liquid including an anion and a cation, a second layer including an ionically conductive ionomer, and a catalyst including a metal positioned on the solid, where the ionic liquid forms a first layer on the solid, the first layer is positioned between the second layer and the solid, and the catalyst is positioned between the solid and the first layer.Type: GrantFiled: September 28, 2021Date of Patent: September 24, 2024Assignees: Alliance for Sustainable Energy, LLC, Drexel UniversityInventors: Yawei Li, Kenneth Charles Neyerlin, Joshua David Snyder
-
Publication number: 20240312711Abstract: Disclosed herein are thin films and methods of forming thin films. An example thin film may comprise Ba—Ti—O configured to exhibit a structure where a distance of one or more neighboring Ti—Ti atoms is less than 3 ?.Type: ApplicationFiled: February 18, 2022Publication date: September 19, 2024Applicants: DREXEL UNIVERSITY, BAR-ILAN UNIVERSITYInventors: Matthias FALMBIGL, Iryna S. GOLOVINA, Christopher J. HAWLEY, Aleksandr V. PLOKHIKH, Or SHAFIR, Ilya GRINBERG, Jonathan E. SPANIER
-
Patent number: 12090203Abstract: The present invention provides methods for preparing acoustically-sensitive microbubbles. The method includes the steps of: i) preparing a first surfactant solution comprising a first micelle-forming surfactant at a concentration above the critical micelle concentration (CMC); ii) adding one or more pharmaceutical compounds in a solvent to the first surfactant solution, thereby loading the micelles with the one or more pharmaceutical compounds; iii) preparing a second surfactant solution comprising a second surfactant, wherein the second surfactant comprises one or more matrix forming surfactants; iv) adding heat to the second surfactant solution to melt the surfactant and allowing the mixture to cool under rapid stirring; v) combining the second surfactant solution with the loaded micelles; vi) purging the surfactant mixture with a purging gas; vii) agitating the purged mixture under a constant stream of the purging gas; and, viii) separating the formed microbubbles by size.Type: GrantFiled: May 29, 2020Date of Patent: September 17, 2024Assignees: Drexel University, Thomas Jefferson UniversityInventors: Margaret A. Wheatley, John Robert Eisenbrey, Brian E. Oeffinger, Purva Vaidya
-
Patent number: 12070507Abstract: One aspect of the invention provides a method for reducing inflammation in a patient including locally administering a composition comprising a complex comprising octadecylamine surface-functionalized nanodiamonds with dexamethasone bound to octadecylamine. Another aspect of the invention provides a method for reducing inflammation in a patient comprising locally administering a composition including octadecylamine surface-functionalized nanodiamonds, wherein no therapeutic agent is bound to the nanodiamonds.Type: GrantFiled: March 3, 2022Date of Patent: August 27, 2024Assignee: Drexel UniversityInventors: Kara Lorraine Spiller, Amanda Elizabeth Pentecost, Yury Gogotsi
-
Patent number: 12059000Abstract: The disclosure provides a human-safe method of killing or controlling insects using a non-toxic composition comprising erythritol ((2R,3S)-butane-1,2,3,4-tetraol). The disclosure also provides non-toxic compositions comprising erythritol suitable for killing insects in residential, commercial, and agricultural locales.Type: GrantFiled: October 20, 2022Date of Patent: August 13, 2024Assignee: Drexel UniversityInventors: Daniel R. Marenda, Sean O'Donnell
-
Patent number: 12059540Abstract: A right ventricle-pulmonary artery conduit provides a first end having a first disc extending radially therefrom and a second disc, proximate to the first disc. The second disc extends radially from the first end. An expandable lumen section extends between the first disc and the second disc. The conduit also has a second end, distal from the first end.Type: GrantFiled: September 13, 2020Date of Patent: August 13, 2024Assignee: Drexel UniversityInventors: Randy Michael Stevens, Achintya Moulick, Vicki Mahan, Amy L. Throckmorton
-
Publication number: 20240267001Abstract: In absence of electrical approaches for realization of highly stable RF oscillator, opto-electronic oscillators (OEO) techniques are provided, where self-forced oscillation techniques using long optical delays demonstrate significant short-term and long-term frequency stability. Fully integrated opto-electronic oscillator chip (IOEC) may be the most efficient realization of an RF frequency synthesizer in terms of operation frequency (covering microwave and millimeter wave), size (<10 cm3), ruggedness to environmental effects of temperature (?40 to 80C), vibration (up to 40g), low timing jitter (<5fs for 40 GHz carrier), and wall-plug efficiency (output power >10 dBm from under 1 W power). A free-running III-V (primarily InP) based multi-mode laser (MML) diodes is designed with large mode number (e.g., over 60 modes) and intermodal oscillation frequency compatible with desired RF carrier signal (e.g., 1-40 GHz).Type: ApplicationFiled: June 10, 2022Publication date: August 8, 2024Applicant: Drexel UniversityInventors: Afshin S. Daryoush, Kai Wei
-
Publication number: 20240262773Abstract: A polymerizable monomer prepared by reacting at least one epoxidized cardanol with (meth)acrylic anhydride or (meth)acryloyl chloride in the presence of one or more of triethylamine, tertiary amines, pyridines and pyridine derivatives; wherein the epoxidized cardanol is formed by epoxidation of an unsaturation site of a cardanol having the formula (I): wherein R is selected from hydrogen and an alkyl, or alkenyl group having 1-6 carbon atoms, and n is 7, 10, or 13, a polymer and resin made form the polymerizable monomer, and a method of preparing such a polymer. The resin created from this monomer is suitable for moderate temperature composites and coatings applications.Type: ApplicationFiled: March 6, 2024Publication date: August 8, 2024Applicants: DREXEL UNIVERSITY, Government of USA, by The Secretary of the ArmyInventors: Giuseppe R. Palmese, Emre Kinaci, John J. LaScala
-
Publication number: 20240252389Abstract: A deep vein thrombosis prevention device (DVT-PD) is a wearable device for the lower extremities senses the user's dynamic or static movements and actuates accordingly to lower DVT risks. The device uses a comprehensive control system together with an integrated machine learning model. to classify, manage, direct, and regulate signals and the behavior of the device.Type: ApplicationFiled: May 16, 2022Publication date: August 1, 2024Applicant: Drexel UniversityInventors: Hassan El Mghari, Gregory Olsen, Zikang Ling, Srivatsa Rayar Ganesh, William Mongan, Vasil Pano, Kapil R. Dandekar
-
Patent number: 12042206Abstract: Disclosed is a method for treating actinic keratosis of tissue of a patient, the method including contacting non-thermal, atmospheric pressure plasma over areas of the tissue having actinic keratosis for a time and at treatment conditions effective to give rise to an at least partial amelioration of the keratosis.Type: GrantFiled: January 20, 2023Date of Patent: July 23, 2024Assignee: Drexel UniversityInventors: Peter C Friedman, Vandana Miller, Gregory Fridman, Abraham Lin, Alexander Fridman
-
Patent number: 12048132Abstract: In an aspect, the present disclosure provides a heat-treated transition metal carbonitride MXene film annealed at high temperatures and a polymer composite comprising the same. In another aspect, the present disclosure provides a method for producing a heat-treated transition metal carbonitride MXene film comprising: obtaining a MXene aqueous solution containing dispersed 2-dimensional (2D) MXenes through an acid etching process; filtering the obtained MXene aqueous solution through a vacuum filtration process to produce a free-standing film; and annealing the produced free-standing film at high temperatures to obtain a heat-treated transition metal carbonitride MXene film. In still another aspect, the present disclosure provides an electromagnetic interference (EMI) shielding method comprising: superposing a coating comprising a heat-treated transition metal carbonitride MXene film on at least one surface of an object in a contact or non-contact manner.Type: GrantFiled: February 18, 2021Date of Patent: July 23, 2024Assignees: Korea Institute of Science and Technology, Drexel UniversityInventors: Yury Gogotsi, Kanit Hantanasirisakul, Chong Min Koo, Aamir Iqbal, Soon Man Hong, Seon Joon Kim, Seung Sang Hwang, Kyung Youl Baek, Albert Lee, Sangho Cho
-
Publication number: 20240243356Abstract: Ionic liquid N-methyl-N-propyl-pyrrolidinium bis(fluorosulfonyl)imide (Pyr13FSI) was introduced into a hybrid network to obtain a series of gel polymer electrolytes (GPEs). Mechanical and electrochemical properties of the GPEs were tuned through controlling the network structure and ionic liquid contents, and ionic conductivity higher than 1 mS cm?1 at room temperature was achieved. The newly developed GPEs are flame-retardant and show excellent thermal and electrochemical stability as well as ultra-stability with lithium metal anode. Symmetrical lithium cells with the GPEs exhibit a stable cycling over 6800 h at a current density of 0.1 mA cm?2 and stable lithium stripping-plating at 1 mA cm?2, the highest current density reported for ionic liquid-based GPEs. Moreover, Li/LiFePO4 batteries with the obtained GPEs exhibit desirable cycling stability and rate performance over a wide temperature range from 0° C. to 90° C.Type: ApplicationFiled: November 8, 2023Publication date: July 18, 2024Applicant: DREXEL UNIVERSITYInventors: Xiaowei Li, Yongwei Zheng, Christopher Li
-
Publication number: 20240214803Abstract: A key-based interleaver for enhancement the security of wireless communication includes a physical layer communication channel key to provide security even when the software encryption key is compromised. A method of creating a secure communication link using a physical layer interleaving system includes implementing a key policy implementation that utilizes temporal dependency and interleaving bits using a flexible inter and intra-block data interleaver.Type: ApplicationFiled: December 23, 2022Publication date: June 27, 2024Applicant: Drexel UniversityInventors: Kapil R. Dandekar, James J. Chacko, Kyle Joseph Juretus, Marko Jacovic, Cem Sahin, Nagarajan Kandasamy, Ioannis Savidis
-
Patent number: 12015092Abstract: The present invention(s) is directed to novel conductive Mn+1Xn(Ts) compositions exhibiting high volumetric capacitances, and methods of making the same. The present invention(s) is also directed to novel conductive Mn+1Xn(Ts) compositions, methods of preparing transparent conductors using these materials, and products derived from these methods.Type: GrantFiled: February 23, 2022Date of Patent: June 18, 2024Assignee: Drexel UniversityInventors: Michael J Ghidiu, Michel W Barsoum, Yury Gogotsi, Aaron Thomas Fafarman, Andrew DeVries Dillon
-
Patent number: 12005317Abstract: A system for delivering physical therapy to a user includes an active video gaming system that has a motion detector capable of detecting the physical motions of a user. The system includes parameters related to movement restrictions that a user may have and the system creates a gaming environment based on the parameters.Type: GrantFiled: February 12, 2018Date of Patent: June 11, 2024Assignee: Drexel UniversityInventors: Paul J. Diefenbach, Robert C. Gray, Timothy J. Day, Margaret E. O'Neil
-
Publication number: 20240186516Abstract: Methods of making a cathode active material, including steps of: a) mixing a conductive polymer, a nitrogen containing polymer or a combination of a conductive polymer and a nitrogen-containing polymer with sulfur in the presence of a solvent to form a mixture, using a weight ratio of the conductive polymer and/or nitrogen containing polymer to the sulfur of from about 1:2 to about 1:8; and b) heating the mixture to a temperature of from about 250#C to about 400#C under a pressure of from about 0.05 bar to about 2.0 bar to form the cathode active material. A cathode active material formed by the method and cells and batteries employing the cathode active material.Type: ApplicationFiled: April 25, 2022Publication date: June 6, 2024Applicant: DREXEL UNIVERSITYInventors: Krishna Kumar Sarode, Vibha Kalra
-
Patent number: 11998728Abstract: A switchable pump device is provided and comprises a pump assembly including first and second pumps each having a separate inlet and outlet, an inner core or shell housing the pump assembly, and an outer shell housing the inner shell and having a pair of openings. The outer shell is interconnected to the inner shell such that the inner shell is movable relative to the outer shell to enable the inlet and outlet of a selected one of the first and second pumps to be aligned with the pair of openings in the outer shell to place the selected one of the first and second pumps in an operational condition while the other of the first and second pumps is positioned in an inoperative condition.Type: GrantFiled: January 7, 2021Date of Patent: June 4, 2024Assignee: Drexel UniversityInventors: Amy L. Throckmorton, Carson Fox, Harutyun Sarkisyan, Steven Chopski
-
Patent number: 11983497Abstract: Privacy, protection, and de-anonymization are issues of societal importance that are implicitly at the core of several key information systems, from electronic health records to online reviews. The system and method herein allows for an identification of an author of anonymous writing based on the text and structured data, subject to practical constraints on the intruder's amount of training data and effort using Shapley values.Type: GrantFiled: November 20, 2020Date of Patent: May 14, 2024Assignee: Drexel UniversityInventors: Matthew John Schneider, Shawn Mankad
-
Publication number: 20240146104Abstract: A dynamic capacitive power transfer system for an elevator that can realize the real-time powering of the elevator when it is in the moving status. It includes a metal track along the building side as the power transmitter and a piece of metal at the elevator side as the power receiver. There is a gap between the transmitter and receiver, and up to kW power can be transferred wirelessly and efficiently to serve the air conditioner, lightning, and other electronic devices in the moving car. The steel wheels and ropes may be used to connect the moving car to the earth ground, which contributes to form the current returning loop. It eliminates the electric cables and the corresponding flexible cable carrier system for the linear movement.Type: ApplicationFiled: January 6, 2024Publication date: May 2, 2024Applicant: Drexel UniversityInventors: Fei Lu, Hua Zhang