Patents Assigned to Drexel University
-
Publication number: 20240410860Abstract: A nondestructive evaluation method for determining the material used in a below-ground service line includes inserting a probe with a wave measurement device therein into an area corresponding to a location of a service line; generating a service line wave through an exposed portion of the service line using a vibratory shaker or other mechanical excitation; measuring, by the wave measurement device, a substrate wave created by the service line wave passing thought the service line and into the substrate; identifying, by a data acquisition system, the service line wave velocity and attenuation; comparing the service line wave velocity and attenuation to a known set of wave velocities and attenuations in service lines according to a service line material; and identifying the service line material in the service line by comparing the wave velocity and attenuation in the service line with the known set of wave velocities and attenuations.Type: ApplicationFiled: September 28, 2022Publication date: December 12, 2024Applicant: Drexel UniversityInventors: Ivan Bartoli, Charles Nathan Haas, Kurt Sjoblom
-
Patent number: 12162891Abstract: The present invention provides compounds useful for treating, ameliorating or preventing a disease or disorder that is caused, induced or characterized by abnormal reduction in glutamate transporter activity or abnormal increase in extracellular CNS glutamate concentration in a subject. In certain embodiments, the compound stimulates a glutamate transporter.Type: GrantFiled: June 23, 2022Date of Patent: December 10, 2024Assignee: Drexel UniversityInventors: Sandhya Kortagere, Andreia C. K. Mortensen, Ole V. Mortensen, Joseph M. Salvino
-
Patent number: 12160096Abstract: With the fasting growth of renewable energy resources and DC supplied loads, DC electrical systems have been increasingly received attentions all over the world. DC breaker systems play a key role in protection systems for disconnecting sources and loads, and they are also used mainly for removing faulted sections from the system accurately and reliably. Solid state DC breakers benefit from fast response time and compactness features; however, due to the lack of zero current realization and high-power losses, the reliability and efficiency of these devices is low. The system proposes a solid-state DC breaker for medium voltage DC (MVDC) systems.Type: GrantFiled: April 13, 2021Date of Patent: December 3, 2024Assignee: Drexel UniversityInventors: Fei Lu, Hua Zhang, Reza Kheirollahi, Yao Wang, Shuyan Zhao
-
Publication number: 20240392058Abstract: An antimicrobial amphiphilic copolymer comprising units derived from one or more hydrophobic polymers and one or more hydrophilic polymers, wherein the copolymer is selected from the group consisting of non-ionic and anionic copolymers and the copolymer is a random copolymer or a block copolymer, methods for making the copolymer, coatings made from the copolymer and medical devices coated with the copolymer.Type: ApplicationFiled: May 22, 2024Publication date: November 28, 2024Applicant: Drexel UniversityInventors: Wan Y. SHIH, Wei-Heng SHIH, Jamie TRINH
-
Patent number: 12152036Abstract: The disclosure provides compounds of formula (II) having the structure: Compounds of formula (II) are fractalkine receptor agonists and useful in treating, preventing or minimizing metastasis in a subject diagnosed with cancer. The compounds of the disclosure are further useful in treating central nervous system diseases (such as, but not limited to, HIV Associated Neurocognitive Disorders (HAND), and/or Alzheimer's disease), pain, inflammation (such as, but not limited to, arthritis), cardiovascular disease (such as, but not limited to, undesired vascular smooth muscle proliferation, atherosclerosis, coronary vascular endothelial dysfunction, and/or coronary artery disease), and/or multiple sclerosis.Type: GrantFiled: January 25, 2022Date of Patent: November 26, 2024Assignee: Drexel UniversityInventors: Joseph M. Salvino, Xin Feng, Alessandro Fatatis, Fei Shen, Olimpia Meucci
-
Publication number: 20240374892Abstract: A directional tunnel device for a subcutaneous implantable device is provided. The tunnel device includes an elongate outer sleeve having an open proximal end and an open distal end. An elongate outer trough has a trough proximal end, a trough distal end, and a concave cradle extending between the trough proximal end and the trough distal end. The outer trough is sized to slidingly fit inside outer sleeve such that the outer sleeve is slidable externally along the outer trough. An inner glide rests in the cradle. The inner glide includes an inner trough, a guide arm connected to a distal end of the inner trough, and a pivot arm connected to a distal end of the guide arm.Type: ApplicationFiled: May 6, 2022Publication date: November 14, 2024Applicant: Drexel UniversityInventor: Randy Michael Stevens
-
Patent number: 12139437Abstract: Off-spec fly ash-based spherical lightweight aggregate (LWA), designated SPoRA, was manufactured and its engineering properties, including specific gravity, dry rodded unit weight, water absorption, mechanical performance, and pore structure, were evaluated. Using the characterized SPoRA, lightweight concrete (LWC) samples were made and properties of the LWC were assessed and compared with samples made using the traditional LWA. The results indicated that fine and coarse SPoRA had 72 h absorption capacities of 16.4% and 20.9%, respectively, which were higher than that of traditional LWA. SPoRA had a saturated surface dry (SSD) specific gravity higher than traditional LWA, which resulted in higher fresh density for the LWC prepared with SPoRA. Large spherical type pores were found for SPoRA similar to the traditional slate-based LWA. The pore size distribution of SPoRA, characterized using a dynamic vapor sorption analyzer, indicated that more than 97% of the pores had pore diameters greater than 50 nm.Type: GrantFiled: August 30, 2022Date of Patent: November 12, 2024Assignee: Drexel UniversityInventors: Mohammad Balapour, Yaghoob Farnam
-
Publication number: 20240372149Abstract: An electrolyte solvent having a dielectric constant of 10 or less comprising: a) 0% to 30% by volume of one or more of components i)-iii), based on a total volume of the electrolyte solvent: i) one or more unsubstituted cyclic carbonate(s): ii) one or more unsubstituted lactone(s); and iii) one or more unsubstituted oxazolidine(s); and b) 70% to 100% by volume of one or more of components iv)-vii), based on the total volume of the electrolyte solvent: iv) one or more substituted cyclic carbonate(s) having 3-15 carbon atoms: v) one or more substituted lactone(s) having 3-15 carbon atoms; and vi) one or more substituted oxazolidine(s) having 3-15 carbon atoms; and vii) one or more acyclic carbonate(s) having 2-20 carbon atoms. A method of making a cathode and cathodes and batteries made by the methods are also disclosed.Type: ApplicationFiled: July 15, 2022Publication date: November 7, 2024Applicant: DREXEL UNIVERSITYInventors: JinWon KIM, Vibha KALRA, Krishna Kumar SARODE
-
Publication number: 20240333277Abstract: Solid-state circuit breakers (SSCBs) have been witnessing an impressive progress with the aid of wide bandgap (WBG) devices such as silicon carbide (SiC) MOSFETs. Along with obtaining high efficiency as the result of low on-state resistance, response times have been gaining remarkable achievements in microseconds range. Not only that, the reported successes in control and gate drivers design and incorporating fault detection/location techniques in SSCBs are promising. A MOV-resistive capacitive switch (MOV-RCS) snubber for solid state circuit breakers addresses the following: 1) the MOV degradation issue in DCCBs is solved, 2) the maximum allowable DC bus voltage on DCCBs is extended. The solid state circuit breaker and an active clamping snubber includes a first circuit including a fault current bypass based solid state breaker for low voltage direct current systems.Type: ApplicationFiled: June 24, 2022Publication date: October 3, 2024Applicant: Drexel UniversityInventors: Fei Lu, Hua Zhang, Reza Kheirollahi
-
Patent number: 12098469Abstract: The present disclosure relates to a composition that includes a solid, a first layer of an ionic liquid including an anion and a cation, a second layer including an ionically conductive ionomer, and a catalyst including a metal positioned on the solid, where the ionic liquid forms a first layer on the solid, the first layer is positioned between the second layer and the solid, and the catalyst is positioned between the solid and the first layer.Type: GrantFiled: September 28, 2021Date of Patent: September 24, 2024Assignees: Alliance for Sustainable Energy, LLC, Drexel UniversityInventors: Yawei Li, Kenneth Charles Neyerlin, Joshua David Snyder
-
Publication number: 20240312711Abstract: Disclosed herein are thin films and methods of forming thin films. An example thin film may comprise Ba—Ti—O configured to exhibit a structure where a distance of one or more neighboring Ti—Ti atoms is less than 3 ?.Type: ApplicationFiled: February 18, 2022Publication date: September 19, 2024Applicants: DREXEL UNIVERSITY, BAR-ILAN UNIVERSITYInventors: Matthias FALMBIGL, Iryna S. GOLOVINA, Christopher J. HAWLEY, Aleksandr V. PLOKHIKH, Or SHAFIR, Ilya GRINBERG, Jonathan E. SPANIER
-
Patent number: 12090203Abstract: The present invention provides methods for preparing acoustically-sensitive microbubbles. The method includes the steps of: i) preparing a first surfactant solution comprising a first micelle-forming surfactant at a concentration above the critical micelle concentration (CMC); ii) adding one or more pharmaceutical compounds in a solvent to the first surfactant solution, thereby loading the micelles with the one or more pharmaceutical compounds; iii) preparing a second surfactant solution comprising a second surfactant, wherein the second surfactant comprises one or more matrix forming surfactants; iv) adding heat to the second surfactant solution to melt the surfactant and allowing the mixture to cool under rapid stirring; v) combining the second surfactant solution with the loaded micelles; vi) purging the surfactant mixture with a purging gas; vii) agitating the purged mixture under a constant stream of the purging gas; and, viii) separating the formed microbubbles by size.Type: GrantFiled: May 29, 2020Date of Patent: September 17, 2024Assignees: Drexel University, Thomas Jefferson UniversityInventors: Margaret A. Wheatley, John Robert Eisenbrey, Brian E. Oeffinger, Purva Vaidya
-
Patent number: 12070507Abstract: One aspect of the invention provides a method for reducing inflammation in a patient including locally administering a composition comprising a complex comprising octadecylamine surface-functionalized nanodiamonds with dexamethasone bound to octadecylamine. Another aspect of the invention provides a method for reducing inflammation in a patient comprising locally administering a composition including octadecylamine surface-functionalized nanodiamonds, wherein no therapeutic agent is bound to the nanodiamonds.Type: GrantFiled: March 3, 2022Date of Patent: August 27, 2024Assignee: Drexel UniversityInventors: Kara Lorraine Spiller, Amanda Elizabeth Pentecost, Yury Gogotsi
-
Patent number: 12059000Abstract: The disclosure provides a human-safe method of killing or controlling insects using a non-toxic composition comprising erythritol ((2R,3S)-butane-1,2,3,4-tetraol). The disclosure also provides non-toxic compositions comprising erythritol suitable for killing insects in residential, commercial, and agricultural locales.Type: GrantFiled: October 20, 2022Date of Patent: August 13, 2024Assignee: Drexel UniversityInventors: Daniel R. Marenda, Sean O'Donnell
-
Patent number: 12059540Abstract: A right ventricle-pulmonary artery conduit provides a first end having a first disc extending radially therefrom and a second disc, proximate to the first disc. The second disc extends radially from the first end. An expandable lumen section extends between the first disc and the second disc. The conduit also has a second end, distal from the first end.Type: GrantFiled: September 13, 2020Date of Patent: August 13, 2024Assignee: Drexel UniversityInventors: Randy Michael Stevens, Achintya Moulick, Vicki Mahan, Amy L. Throckmorton
-
Publication number: 20240267001Abstract: In absence of electrical approaches for realization of highly stable RF oscillator, opto-electronic oscillators (OEO) techniques are provided, where self-forced oscillation techniques using long optical delays demonstrate significant short-term and long-term frequency stability. Fully integrated opto-electronic oscillator chip (IOEC) may be the most efficient realization of an RF frequency synthesizer in terms of operation frequency (covering microwave and millimeter wave), size (<10 cm3), ruggedness to environmental effects of temperature (?40 to 80C), vibration (up to 40g), low timing jitter (<5fs for 40 GHz carrier), and wall-plug efficiency (output power >10 dBm from under 1 W power). A free-running III-V (primarily InP) based multi-mode laser (MML) diodes is designed with large mode number (e.g., over 60 modes) and intermodal oscillation frequency compatible with desired RF carrier signal (e.g., 1-40 GHz).Type: ApplicationFiled: June 10, 2022Publication date: August 8, 2024Applicant: Drexel UniversityInventors: Afshin S. Daryoush, Kai Wei
-
Publication number: 20240262773Abstract: A polymerizable monomer prepared by reacting at least one epoxidized cardanol with (meth)acrylic anhydride or (meth)acryloyl chloride in the presence of one or more of triethylamine, tertiary amines, pyridines and pyridine derivatives; wherein the epoxidized cardanol is formed by epoxidation of an unsaturation site of a cardanol having the formula (I): wherein R is selected from hydrogen and an alkyl, or alkenyl group having 1-6 carbon atoms, and n is 7, 10, or 13, a polymer and resin made form the polymerizable monomer, and a method of preparing such a polymer. The resin created from this monomer is suitable for moderate temperature composites and coatings applications.Type: ApplicationFiled: March 6, 2024Publication date: August 8, 2024Applicants: DREXEL UNIVERSITY, Government of USA, by The Secretary of the ArmyInventors: Giuseppe R. Palmese, Emre Kinaci, John J. LaScala
-
Publication number: 20240252389Abstract: A deep vein thrombosis prevention device (DVT-PD) is a wearable device for the lower extremities senses the user's dynamic or static movements and actuates accordingly to lower DVT risks. The device uses a comprehensive control system together with an integrated machine learning model. to classify, manage, direct, and regulate signals and the behavior of the device.Type: ApplicationFiled: May 16, 2022Publication date: August 1, 2024Applicant: Drexel UniversityInventors: Hassan El Mghari, Gregory Olsen, Zikang Ling, Srivatsa Rayar Ganesh, William Mongan, Vasil Pano, Kapil R. Dandekar
-
Patent number: 12048132Abstract: In an aspect, the present disclosure provides a heat-treated transition metal carbonitride MXene film annealed at high temperatures and a polymer composite comprising the same. In another aspect, the present disclosure provides a method for producing a heat-treated transition metal carbonitride MXene film comprising: obtaining a MXene aqueous solution containing dispersed 2-dimensional (2D) MXenes through an acid etching process; filtering the obtained MXene aqueous solution through a vacuum filtration process to produce a free-standing film; and annealing the produced free-standing film at high temperatures to obtain a heat-treated transition metal carbonitride MXene film. In still another aspect, the present disclosure provides an electromagnetic interference (EMI) shielding method comprising: superposing a coating comprising a heat-treated transition metal carbonitride MXene film on at least one surface of an object in a contact or non-contact manner.Type: GrantFiled: February 18, 2021Date of Patent: July 23, 2024Assignees: Korea Institute of Science and Technology, Drexel UniversityInventors: Yury Gogotsi, Kanit Hantanasirisakul, Chong Min Koo, Aamir Iqbal, Soon Man Hong, Seon Joon Kim, Seung Sang Hwang, Kyung Youl Baek, Albert Lee, Sangho Cho
-
Patent number: 12042206Abstract: Disclosed is a method for treating actinic keratosis of tissue of a patient, the method including contacting non-thermal, atmospheric pressure plasma over areas of the tissue having actinic keratosis for a time and at treatment conditions effective to give rise to an at least partial amelioration of the keratosis.Type: GrantFiled: January 20, 2023Date of Patent: July 23, 2024Assignee: Drexel UniversityInventors: Peter C Friedman, Vandana Miller, Gregory Fridman, Abraham Lin, Alexander Fridman