Abstract: The subject matter described herein includes methods, systems, and computer readable media for mask embedding for realistic high-resolution image synthesis. According to one method for mask embedding for realistic high-resolution image synthesis includes receiving, as input, a mask embedding vector and a latent features vector, wherein the mask embedding vector acts as a semantic constraint; generating, using a trained image synthesis algorithm and the input, a realistic image, wherein the realistic image is constrained by the mask embedding vector; and outputting, by the trained image synthesis algorithm, the realistic image to a display or a storage device.
Abstract: A phosphor-containing drug activator activatable from a Monte Carlo derived x-ray exposure for treatment of a diseased site. The activator includes an admixture or suspension of one or more phosphors capable of emitting ultraviolet and visible light upon interaction with x-rays, wherein a distribution of the phosphors in the diseased target site is based on a Monte Carlo derived x-ray dose distribution. A system for treating a disease in a subject in need thereof, includes the drug activator and a photoactivatable drug, one or more devices which infuse the photoactivatable drug and the activator including the pharmaceutically acceptable carrier into a diseased site in the subject; and an x-ray source which is controlled to deliver the Monte Carlo derived x-ray exposure to the subject for production of ultraviolet and visible light inside the subject to activate the photoactivatable drug and induce a persistent therapeutic response, the dose comprising a pulsed sequence of x-rays delivering from 0.
Type:
Grant
Filed:
August 1, 2017
Date of Patent:
February 14, 2023
Assignees:
IMMUNOLIGHT, LLC, DUKE UNIVERSITY
Inventors:
Harold Walder, Frederic A. Bourke, Jr., Zakaryae Fathi, Wayne Beyer, Mark Oldham, Justus Adamson, Paul Yoon
Abstract: The subject matter described herein includes methods, systems, and computer readable media for automated attention assessment. According to one method, a method for automated attention assessment includes obtaining head and iris positions of a user using a camera while the user watches a display screen displaying a video containing dynamic region-based stimuli designed for identifying a neurodevelopmental and/or psychiatric (neurodevelopmental/psychiatric) disorder; analyzing the head and iris positions of the user to detect attention assessment information associated with the user, wherein the attention assessment information indicates how often and/or how long the user attended to one or more regions of the display screen while watching the video; determining that the attention assessment information is indicative of the neurodevelopmental/psychiatric disorder; and providing, via a communications interface, the attention assessment information, a diagnosis, or related data.
Type:
Grant
Filed:
November 8, 2019
Date of Patent:
February 14, 2023
Assignee:
Duke University
Inventors:
Guillermo Sapiro, Geraldine Dawson, Matthieu Bovery, Jordan Hashemi
Abstract: Acoustofluidic systems including acoustic wave generators for manipulating fluids, droplets, and micro/nano objects within a fluid suspension and related methods are disclosed herein. According to an aspect, an acoustofluidic system includes a substrate including a substrate surface. The system also includes an acoustic wave generator configured to generate acoustic streaming within an acoustic wave region of the substrate surface. Further, the acoustic wave generator is controllable to change the acoustic streaming for movement of a droplet or other micro/nano object on a fluid suspension about the acoustic wave region.
Abstract: A method for treating a disease, disorder, or condition in a subject in need thereof, by administering either or both of (i) at least one photoactivatable pharmaceutical agent, or (ii) a first plurality of energy-emitting particles, into the subject in a region of the disease, disorder, or condition, whereby the administering is performed through inhalation; and applying an applied electromagnetic energy to the subject, wherein the applied electromagnetic energy directly or indirectly activates the at least one photoactivatable pharmaceutical agent, when present, and wherein when the first plurality of energy-emitting particles is present, the first plurality of energy-emitting particles absorbs the applied energy and emits an emitted electromagnetic energy, wherein the emitted electromagnetic energy interacts directly with the region of the disease, disorder, or condition or activates the at least one photoactivatable pharmaceutical agent.
Type:
Grant
Filed:
April 28, 2020
Date of Patent:
February 7, 2023
Assignees:
IMMUNOLIGHT, LLC., DUKE UNIVERSITY
Inventors:
Frederic A. Bourke, Jr., Harold Walder, Zakaryae Fathi, Michael J. Therien, Mark W. Dewhirst, Ian N. Stanton, Jennifer Ann Ayres, Diane Renee Fels, Joseph A. Herbert
Abstract: Variation-aware delay fault testing suitable for carbon nanotube field-effect transistor circuits can be accomplished using an electronic design automation tool that performs long path selection by generating random variation scenarios, wherein a random variation scenario (RVS) is an instance of an input netlist where values for a set of process parameters for each gate are chosen from a set of values for each process parameter of the set of process parameters for that gate, the set of values being sampled from a distribution of that particular process parameter for that gate and includes a nominal value for that particular process parameter; calculating a total delay through a path for each RVS; and selecting at least two paths having highest total delays for each fault site under random variations of the RVSs. Delay test patterns can then be generated for the selected paths.
Abstract: Provided herein are imaging agents, antidotes to the imaging agents and methods of using the same to image a thrombus or blood clot or thrombin including sites of thrombin accumulation and to diagnose and treat thrombosis. The imaging agents include an aptamer capable of binding the thrombus or thrombin in particular linked to a reporter moiety. The imaging agents may be used to label the thrombus or sites of thrombin accumulation. Antidotes capable of binding to the aptamer in the imaging agent are also provided. The antidotes may further be linked to a quencher capable of quenching the reporter moiety.
Type:
Grant
Filed:
May 21, 2020
Date of Patent:
January 31, 2023
Assignee:
Duke University
Inventors:
Bruce A. Sullenger, Kady-Ann C. Steen-Burrell, Bethany Powell Gray
Abstract: Provided are methods for detecting or isolating circulating tumor cells (CTCs) in a subject. The methods may include detecting the expression of at least one epithelial mesenchymal transition (EMT) biomarker. Further provided are kits for detecting or isolating CTCs. The kits may include antibodies to at least one EMT biomarker. Further provided are methods of predicting the responsiveness of a subject to a cancer drug, methods of targeting delivery of a cancer drug in a subject, methods of providing a cancer prognosis to a subject, and methods for following the progress of cancer in a subject.
Type:
Grant
Filed:
November 30, 2018
Date of Patent:
January 31, 2023
Assignees:
Duke University, Menarini Silicon Biosystems S.p.A.
Inventors:
Galla Chandra Rao, Mark C. Connelly, Mariano A. Garcia-Blanco, Andrew J. Armstrong, Rhonda L. Bitting
Abstract: Provided are methods of sanitizing a subject, and methods of anesthetizing a subject. Further provided are methods of treating and/or preventing dermatological disorders, reducing skin inflammation, reducing pain, and/or reducing itch in a subject in need thereof. The methods may include administering to the subject an effective amount of a TRPA1 and/or TRPV4 inhibitor. Further provided are compositions including a TRPA1 and/or TRPV4 inhibitor compound in combination with a carrier, vehicle, or diluent that is suitable for topical application.
Abstract: Products, compositions, systems, and methods for modifying a target structure which mediates or is associated with a biological activity, including treatment of conditions, disorders, or diseases mediated by or associated with a target structure, such as a virus, cell, subcellular structure or extracellular structure. The methods may be performed in situ in a non-invasive manner by application of an initiation energy to a subject thus producing an effect on or change to the target structure directly or via a modulation agent. The methods may further be performed by application of an initiation energy to a subject in situ to activate a pharmaceutical agent directly or via an energy modulation agent, optionally in the presence of one or more plasmonics active agents, thus producing an effect on or change to the target structure. Kits containing products or compositions formulated or configured and systems for use in practicing these methods.
Type:
Application
Filed:
September 9, 2022
Publication date:
January 26, 2023
Applicants:
Immunolight, LLC, Duke University
Inventors:
Frederic A. BOURKE, JR., Tuan VO-DINH, Harold WALDER
Abstract: Provided herein are methods and biomarkers useful for detecting and diagnosing osteoarthritis and predicting the progression of osteoarthritis in subjects. The diagnoses and predictions of prognosis may be used to develop treatment plans for subjects. Also included are methods of treating subjects and administering pharmaceuticals based on the diagnosis and prognosis predictions.
Type:
Grant
Filed:
February 5, 2016
Date of Patent:
January 24, 2023
Assignee:
Duke University
Inventors:
Virginia B. Kraus, Jonathan B. Catterall, Erik Soderblom, Martin A. Moseley, Sunil Suchindran
Abstract: Provided are chimeric Protein C-Factor VII proteins comprising a Gla domain from Protein C (PC), an EGF-1 domain from PC, an EGF-2 domain from Factor VII (FVII), and a protease domain from FVII.
Type:
Grant
Filed:
August 3, 2019
Date of Patent:
January 24, 2023
Assignees:
Duke University, The U.S. Government as Represented by the Department of Veteran Affairs
Abstract: Disclosed herein are conjugates including a fatty acid, a self-assembly domain, and a polypeptide having phase transition behavior. Further disclosed are methods of using the conjugates to treat disease, methods of delivering an agent, and methods of preparing the conjugates.
Abstract: Micro-Organosphers, including Patient-Derived Micro-Organospheres (PMOS s), apparatuses and methods of making them, and apparatuses and methods of using them. Also described herein are methods and systems for screening a patient using these Patient-Derived Micro-Organospheres, including personalized therapies.
Type:
Grant
Filed:
April 1, 2020
Date of Patent:
January 17, 2023
Assignees:
Xilis, Inc., Duke University
Inventors:
Xiling Shen, David Hsu, Jeffrey Motschman, Daniel Delubac, Zhaohui Wang
Abstract: The present invention relates, in general, to Pompe disease and, in particular, to a methods of treating Pompe disease and to compounds/constructs suitable for use in such methods.
Abstract: Systems, methods and related devices used to produce and collect polarized noble gas to inhibit, suppress, detect or filter alkali metal nanoclusters to preserve or increase a polarization level thereof. The systems can include a pre-sat chamber that has an Area Ratio between 20 and 500.
Abstract: Various examples of out-of-plane multicolor waveguide holography systems, methods of manufacture, and methods of use are described herein. In some examples, a multicolor waveguide holography system includes a planar waveguide to convey optical radiation between a grating coupler and a metasurface hologram. The grating coupler may be configured to couple out-of-plane optical radiation of three different color incident at three different angles into the planar waveguide. The combined multicolor optical radiation may be conveyed by the waveguide to the metasurface hologram. The metasurface hologram may diffractively decouple the three colors of optical radiation for off-plane propagation to form a multicolor holographic image in free space.
Type:
Grant
Filed:
July 1, 2019
Date of Patent:
January 3, 2023
Assignee:
Duke University
Inventors:
David R. Smith, Zhiqin Huang, Daniel L. Marks
Abstract: Described are oxysterols, pharmaceutical compositions including the oxysterols, and methods of using the oxysterols and compositions for treating diseases and/or disorders related to myelin injury, such as neonatal brain injury, traumatic brain injury, spinal cord injury, cerebral palsy, seizures, cognitive delay, multiple sclerosis, stroke, autism, leukodystrophy, schizophrenia and bipolar disorder.
Abstract: The present disclosure provides, in part, nucleic acid loaded flowable hydrogels and compositions, systems and methods related thereto, to effectively deliver nucleic acids to cells that contact the flowable hydrogels.