Abstract: A substrate treatment apparatus that treats a substrate under treatment has an interface section, a substrate loading/unloading section, a reduced pressure atmosphere conveyance chamber, and an exposure treatment chamber. The interface section has a conveyance mechanism that can freely load and unload the substrate under treatment from another device into the apparatus or vice versa. The substrate under treatment can be loaded and unloaded into and from the substrate loading/unloading section in one direction by the conveyance mechanism of the interface section. The reduced pressure atmosphere conveyance chamber is disposed adjacent to and perpendicular to the direction of the substrate loading/unloading section and has a conveyance mechanism that conveys the substrate under treatment under a reduced pressure atmosphere.
Abstract: A substrate treatment apparatus that treats a substrate under treatment has an interface section, a substrate loading/unloading section, a reduced pressure atmosphere conveyance chamber, and an exposure treatment chamber. The interface section has a conveyance mechanism that can freely load and unload the substrate under treatment from another device into the apparatus or vice versa. The substrate under treatment can be loaded and unloaded into and from the substrate loading/unloading section in one direction by the conveyance mechanism of the interface section. The reduced pressure atmosphere conveyance chamber is disposed adjacent to and perpendicular to the direction of the substrate loading/unloading section and has a conveyance mechanism that conveys the substrate under treatment under a reduced pressure atmosphere.
Abstract: A substrate treatment apparatus that treats a substrate under treatment has an interface section, a substrate loading/unloading section, a reduced pressure atmosphere conveyance chamber, and an exposure treatment chamber. The interface section has a conveyance mechanism that can freely load and unload the substrate under treatment from another device into the apparatus or vice versa. The substrate under treatment can be loaded and unloaded into and from the substrate loading/unloading section in one direction by the conveyance mechanism of the interface section. The reduced pressure atmosphere conveyance chamber is disposed adjacent to and perpendicular to the direction of the substrate loading/unloading section and has a conveyance mechanism that conveys the substrate under treatment under a reduced pressure atmosphere.
Abstract: The invention provides a process for forming optical components and new optical materials utilizing electron beam irradiation. The process comprises selectively irradiating optical materials to alter their index of refraction gradient three dimensionally. With the inventive process, new optical materials can be created that have enhanced optical properties over the un-irradiated material. The invention also provides a process in which optical components can be fabricated without requiring a planar/multiple layer process, thereby simplifying the fabrication of these optical components. The inventive process uses a controlled electron beam to alter the properties of optical materials. By using the radiation of a controlled electron beam, controlled changes in the index of refraction gradient of optical materials can be obtained. Further, radiation of the electron beam can be used to create new optical materials from materials not previously believed to be suitable for optical applications.
Abstract: A method for irradiating and modifying high molecular weight organic polymers with high energy radiation so that the radiation impinges only in a distinct pattern which is less than the width of the polymer so as to cause controlled chain scission and continuity in molecular weight distribution. The method improves the flow rate and millability of the polymers.
Abstract: A high intensity image projection system includes a micro-mirror light valve target with micro-mirror elements repulsively pivotally-actuable. Each micro-mirror of the target array comprises a fixed base electrode joined to an overlying micro-mirror element by means of a hinge with each element formed of conductive material. As such, in operation, charge deposited upon either the base electrode or the micro-mirror element is free to migrate, in response to repulsive forces between deposited charges, to the element spaced therefrom. The resulting presence of like charge distributions upon the base electrode and micro-mirror element of a micro-mirror produces a repulsive electrostatic force for pivotally deflecting the micro-mirror element by an amount proportional to the charge deposited thereon. Capacitive charge storage elements and resistive paths are provided for storing and draining the deposited charge between applications of video frame information.
Abstract: A method the electron-beam irradiation of gemstones for uniform color enhancement requiring an electron-beam source having a capacity of 500 kW generating energy of between 3 MeV to 50 MeV. The method requires the gemstones to be moved in and out of the electron-beam path with the electron-beam source also being oscillated but in a direction ninety degrees opposed to the gemstones. Cooling means for the gemstones are also required to prevent heat stress cracking. Gemstones such as beryl, diamonds, quartz, sapphires, tourmaline, dark pearls and other minerals are suitable. More particularly the method relates to the treatment of topaz.
Type:
Grant
Filed:
February 3, 1995
Date of Patent:
June 10, 1997
Assignee:
E-Beam Corporation
Inventors:
Arnold S. Herer, Thomas M. Knobel, Gregory J. Robb