Patents Assigned to Echogen Power Systems
  • Patent number: 9759096
    Abstract: Aspects of the invention provided herein include heat engine systems, methods for generating electricity, and methods for starting a turbo pump. In some configurations, the heat engine system contains a start pump and a turbo pump disposed in series along a working fluid circuit and configured to circulate a working fluid within the working fluid circuit. The start pump may have a pump portion coupled to a motor-driven portion and the turbo pump may have a pump portion coupled to a drive turbine. In one configuration, the pump portion of the start pump is fluidly coupled to the working fluid circuit downstream of and in series with the pump portion of the turbo pump. In another configuration, the pump portion of the start pump is fluidly coupled to the working fluid circuit upstream of and in series with the pump portion of the turbo pump.
    Type: Grant
    Filed: July 16, 2015
    Date of Patent: September 12, 2017
    Assignee: Echogen Power Systems, L.L.C.
    Inventor: Michael Louis Vermeersch
  • Patent number: 9752460
    Abstract: Embodiments of the invention generally provide a heat engine system, a method for generating electricity, and an algorithm for controlling the heat engine system which are configured to efficiently transform thermal energy of a waste heat stream into electricity. In one embodiment, the heat engine system utilizes a working fluid (e.g., sc-CO2) within a working fluid circuit for absorbing the thermal energy that is transformed to mechanical energy by a turbine and electrical energy by a generator. The heat engine system further contains a control system operatively connected to the working fluid circuit and enabled to monitor and control parameters of the heat engine system by manipulating a power turbine throttle valve to adjust the flow of the working fluid. A control algorithm containing multiple system controllers may be utilized by the control system to adjust the power turbine throttle valve while maximizing efficiency of the heat engine system.
    Type: Grant
    Filed: January 27, 2014
    Date of Patent: September 5, 2017
    Assignee: Echogen Power Systems, LLC
    Inventor: Brett A. Bowan
  • Publication number: 20170130614
    Abstract: A heat engine system and a method for cooling a fluid stream in thermal communication with the heat engine system are provided. The heat engine system may include a working fluid circuit configured to flow a working fluid therethrough, and a cooling circuit in fluid communication with the working fluid circuit and configured to flow the working fluid therethrough. The cooling circuit may include an evaporator in fluid communication with the working fluid circuit and configured to be in fluid communication with the fluid stream. The evaporator may be further configured to receive a second portion of the working fluid from the working fluid circuit and to transfer thermal energy from the fluid stream to the second portion of the working fluid.
    Type: Application
    Filed: August 8, 2016
    Publication date: May 11, 2017
    Applicant: Echogen Power Systems, L.L.C.
    Inventors: Timothy Held, Jason D. Miller
  • Patent number: 9638065
    Abstract: Provided herein are heat engine systems and methods for starting such systems and generating electricity while avoiding damage to one or more system components. A provided heat engine system maintains a working fluid (e.g., sc-CO2) within the low pressure side of a working fluid circuit in a liquid-type state, such as a supercritical state, during a startup procedure. Additionally, a bypass system is provided for routing the working fluid around one or more heat exchangers during startup to avoid overheating of system components.
    Type: Grant
    Filed: January 27, 2014
    Date of Patent: May 2, 2017
    Assignee: Echogen Power Systems, LLC
    Inventors: Michael Louis Vermeersch, Brett A. Bowan, Swapnil Khairnar
  • Patent number: 9458738
    Abstract: Aspects of the disclosure generally provide a heat engine system and a method for regulating a pressure and an amount of a working fluid in a working fluid circuit during a thermodynamic cycle. A mass management system may be employed to regulate the working fluid circulating throughout the working fluid circuit. The mass management systems may have a mass control tank fluidly coupled to the working fluid circuit at one or more strategically-located tie-in points. A heat exchanger coil may be used in conjunction with the mass control tank to regulate the temperature of the fluid within the mass control tank, and thereby determine whether working fluid is either extracted from or injected into the working fluid circuit. Regulating the pressure and amount of working fluid in the working fluid circuit selectively increases or decreases the suction pressure of the pump to increase system efficiency.
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: October 4, 2016
    Assignee: ECHOGEN POWER SYSTEMS, LLC
    Inventors: Timothy James Held, Stephen Hostler, Jason D. Miller, Michael Vermeersch, Tao Xie
  • Patent number: 9441504
    Abstract: The present invention generally relates to a system that enables one to both: (i) address various thermal management issues (e.g., inlet air cooling) in gas turbines, gas turbine engines, industrial process equipment and/or internal combustion engines; and (ii) yield a supercritical fluid-based heat engine. In one embodiment, the present invention utilizes at least one working fluid selected from ammonia, carbon dioxide, nitrogen, or other suitable working fluid medium. In another embodiment, the present invention utilizes carbon dioxide or ammonia as a working fluid to achieve a system that enables one to address inlet cooling issues in a gas turbine, internal combustion engine or other industrial application while also yielding a supercritical fluid based heat engine as a second cycle using the waste heat from the gas turbine and/or internal combustion engine to create a combined power cycle.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: September 13, 2016
    Assignee: Echogen Power Systems, LLC
    Inventor: Timothy James Held
  • Patent number: 9410449
    Abstract: Aspects of the disclosure generally provide a heat engine system with a working fluid circuit and a method for starting a turbopump disposed in the working fluid circuit. The turbopump has a main pump and may be started and ramped-up using a starter pump arranged in parallel with the main pump of the turbopump. Once the turbopump reaches a self-sustaining speed of operation, a series of valves may be manipulated to deactivate the starter pump and direct additional working fluid to a power turbine for generating electrical power.
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: August 9, 2016
    Assignee: Echogen Power Systems, LLC
    Inventors: Timothy James Held, Michael Vermeersch, Tao Xie
  • Patent number: 9341084
    Abstract: Aspects of the invention disclosed herein generally provide heat engine systems and methods for recovering energy, such as by generating electricity from thermal energy. In one configuration, a heat engine system contains a working fluid (e.g., sc-CO2) within a working fluid circuit, two heat exchangers configured to be thermally coupled to a heat source (e.g., waste heat), two expanders, two recuperators, two pumps, a condenser, and a plurality of valves configured to switch the system between single/dual-cycle modes. In another aspect, a method for recovering energy may include monitoring a temperature of the heat source, operating the heat engine system in the dual-cycle mode when the temperature is equal to or greater than a threshold value, and subsequently, operating the heat engine system in the single-cycle mode when the temperature is less than the threshold value.
    Type: Grant
    Filed: October 10, 2013
    Date of Patent: May 17, 2016
    Assignee: Echogen Power Systems, LLC
    Inventors: Tao Xie, Michael Vermeersch, Timothy Held
  • Patent number: 9316404
    Abstract: The present invention generally relates to heat pumps that utilize at least one solar receiver operating with the same working fluids. In one embodiment, the present invention relates to a hybrid solar heat pump comprised of at least one microchannel heat exchanger with integral solar absorber, at least one compression device as the heat pump for concurrent compression to a higher pressure and mass flow regulator of the working fluid, and at least one working fluid accumulator with the entire system operating with the same working fluid.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: April 19, 2016
    Assignee: ECHOGEN POWER SYSTEMS, LLC
    Inventor: Michael H. Gurin
  • Patent number: 9284855
    Abstract: Waste heat energy conversion cycles, systems and devices use multiple waste heat exchangers arranged in series in a waste heat stream, and multiple thermodynamic cycles run in parallel with the waste heat exchangers in order to maximize thermal energy extraction from the waste heat stream by a working fluid. The parallel cycles operate in different temperature ranges with a lower temperature work output used to drive a working fluid pump. A working fluid mass management system is integrated into or connected to the cycles.
    Type: Grant
    Filed: August 18, 2011
    Date of Patent: March 15, 2016
    Assignee: Echogen Power Systems, LLC
    Inventors: Timothy James Held, Michael Louis Vermeersch, Tao Xie, Jason Miller
  • Publication number: 20160061055
    Abstract: A heat engine system and a method for generating electrical energy from the heat engine system are provided. The method includes circulating via a turbo pump a working fluid within a working fluid circuit of the heat engine system. The method also includes transferring thermal energy from a heat source stream to the working fluid by at least a primary heat exchanger, feeding the working fluid into a power turbine and converting the thermal energy from the working fluid to mechanical energy, and converting the mechanical energy into electrical energy by a generator coupled to the power turbine. At least one valve operatively coupled to a control system is modulated in order to synchronize the generator with an electrical grid. A generator breaker is closed such that the generator and electrical grid are electrically coupled and the electrical energy is supplied to the electrical grid.
    Type: Application
    Filed: March 12, 2014
    Publication date: March 3, 2016
    Applicant: ECHOGEN POWER SYSTEMS, L.L.C.
    Inventor: Brett A. Bowan
  • Publication number: 20160040557
    Abstract: Provided herein are a heat engine system and a method for generating energy, such as transforming thermal energy into mechanical energy and/or electrical energy. The heat engine system may have a single charging pump for efficiently implementing at least two independent tasks. The charging pump may be utilized to remove working fluid (e.g., CO2) from and/or to add working fluid into a working fluid circuit during inventory control of the working fluid. The charging pump may be utilized to transfer or otherwise deliver the working fluid as a cooling agent to bearings contained within a bearing housing of a system component during a startup process. The heat engine system may also have a mass control tank utilized with the charging pump and configured to receive, store, and distribute the working fluid.
    Type: Application
    Filed: March 13, 2014
    Publication date: February 11, 2016
    Applicant: ECHOGEN POWER SYSTEMS, L.L.C.
    Inventor: Michael Louis Vermeersch
  • Publication number: 20160017759
    Abstract: A heat engine system and a method are provided for generating energy by transforming thermal energy into mechanical and/or electrical energy, and for controlling a thrust load applied to a turbopump of the heat engine system. The generation of energy may be optimized by controlling a thrust or net thrust load applied to a turbopump of the heat engine system. The heat engine system may include one or more valves, such as a turbopump throttle valve and/or a bearing drain valve, which may be modulated to control the thrust load applied to the turbopump during one or more modes of operating the heat engine system.
    Type: Application
    Filed: March 12, 2014
    Publication date: January 21, 2016
    Applicant: ECHOGEN POWER SYSTEMS, L.L.C.
    Inventors: Suyash Gayawal, Michael Louis Vermeersch
  • Publication number: 20160017758
    Abstract: Provided herein are a heat engine system and a method for managing a working fluid in the heat engine system during an emergency shutdown. The heat engine system utilizes a working fluid (e.g., sc-CO2) contained within a working fluid circuit to absorb and transport heat. An inventory system is coupled to the working fluid circuit and configured to receive and store at least a portion of the working fluid in the working fluid circuit during an emergency shutdown process. An attemperation line is coupled to the working fluid circuit upstream one or more heat exchangers and configured to direct a portion of the working fluid flow around at least one or more heat exchangers, thereby managing the temperature of the working fluid in the working fluid circuit.
    Type: Application
    Filed: March 11, 2014
    Publication date: January 21, 2016
    Applicant: ECHOGEN POWER SYSTEMS, L.L.C.
    Inventors: Michael Louis Vermeersch, Brett A. Bowan, Jason Miller, Swapnil Khairnar
  • Publication number: 20160010512
    Abstract: Provided herein is a heat engine system and a method for transforming energy, such as generating mechanical energy and/or electrical energy from thermal energy. The heat engine system may have one of several different configurations of a mass management system (MMS) fluidly coupled to a working fluid circuit. The MMS may be utilized to control the amount of working fluid added to, contained within, or removed from the working fluid circuit. The MMS may contain a mass control tank, an inventory transfer line, and system/tank transfer valves. The MMS may contain a transfer pump fluidly coupled to the inventory transfer line and configured to control the pressure in the inventory transfer line. The MMS may have two or more transfer lines, such as an inventory return line and valve, and an inventory supply line and valve.
    Type: Application
    Filed: March 12, 2014
    Publication date: January 14, 2016
    Applicant: ECHOGEN POWER SYSTEMS, L.L.C.
    Inventor: Cameron CLOSE
  • Publication number: 20160003108
    Abstract: Provided herein are heat engine systems and methods for transforming energy, such as generating mechanical energy and/or electrical energy from thermal energy. The heat engine systems may have one of several different configurations of a working fluid circuit. One configuration of the heat engine system contains at least four heat exchangers and at least three recuperators sequentially disposed on a high pressure side of the working fluid circuit between a system pump and an expander. Another configuration of the heat engine system contains a low-temperature heat exchanger and a recuperator disposed upstream of a split flowpath and downstream of a recombined flowpath in the high pressure side of the working fluid circuit.
    Type: Application
    Filed: March 4, 2014
    Publication date: January 7, 2016
    Applicant: ECHOGEN POWER SYSTEMS, L.L.C.
    Inventors: Timothy HELD, Joshua GIEGEL
  • Publication number: 20150377076
    Abstract: Systems and methods for controlling a heat engine system are provided. One method includes initiating flow of a working fluid through a working fluid circuit having a high pressure side and a low pressure side by controlling a pump to pressurize and circulate the working fluid through the working fluid circuit and determining a configuration of the working fluid circuit by determining which of a plurality of waste heat exchangers and which of a plurality of recuperators to position in the high pressure side of the working fluid circuit. The method also includes determining, based on the determined configuration of the working fluid circuit, for each of a plurality of valves, whether to position each respective valve in an opened position, a closed position, or a partially opened position and actuating each of the plurality of valves to the determined opened position, closed position, or partially opened position.
    Type: Application
    Filed: September 3, 2014
    Publication date: December 31, 2015
    Applicant: Echogen Power Systems, L.L.C.
    Inventors: Joshua Giegel, Timothy Held, Brett Bowan, Cameron Close
  • Publication number: 20150345339
    Abstract: Aspects of the invention provided herein include heat engine systems, methods for generating electricity, and methods for starting a turbo pump. In some configurations, the heat engine system contains a start pump and a turbo pump disposed in series along a working fluid circuit and configured to circulate a working fluid within the working fluid circuit. The start pump may have a pump portion coupled to a motor-driven portion and the turbo pump may have a pump portion coupled to a drive turbine. In one configuration, the pump portion of the start pump is fluidly coupled to the working fluid circuit downstream of and in series with the pump portion of the turbo pump. In another configuration, the pump portion of the start pump is fluidly coupled to the working fluid circuit upstream of and in series with the pump portion of the turbo pump.
    Type: Application
    Filed: July 16, 2015
    Publication date: December 3, 2015
    Applicant: Echogen Power Systems, L.L.C.
    Inventor: Michael Louis Vermeersch
  • Publication number: 20150330261
    Abstract: A system including a seal cartridge is provided. The seal cartridge includes a housing defining a passageway that receives a driveshaft. A dry gas seal is circumferentially disposed about the passageway within the housing at a first axial location along the housing. A magnetic liquid seal is circumferentially disposed about the passageway within the housing at a second axial location along the housing. A fluid leakage cavity is formed between the dry gas seal at the first axial location and the magnetic liquid seal at the second axial location. An extraction port is disposed in the housing and enables recovery of a leaked fluid from the fluid leakage cavity.
    Type: Application
    Filed: May 8, 2015
    Publication date: November 19, 2015
    Applicant: Echogen Power Systems, L.L.C.
    Inventor: Timothy Held
  • Patent number: 9115605
    Abstract: Embodiments provide a power generation device that utilizes a working fluid containing carbon dioxide within a working fluid circuit having high and low pressure sides. Components of the device may include a heat exchanger configured to be in thermal communication with a heat source whereby thermal energy is transferred from the heat source to the working fluid, an expander located between the high and low pressure sides of the working fluid circuit and operative to convert a pressure drop in the working fluid to mechanical energy, a recuperator operative to transfer thermal energy between the high and low pressure sides, a cooler operative to control temperature of the working fluid in the low pressure side, a pump operative to circulate the working fluid through the working fluid circuit, and a mass management system configured to control an amount of working fluid mass in the working fluid circuit.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: August 25, 2015
    Assignee: Echogen Power Systems, LLC
    Inventors: Timothy J. Held, Stephen Hostler, Jason D. Miller, Brian F. Hume