Patents Assigned to Element Six Limited
  • Publication number: 20240012381
    Abstract: This disclosure relates to a method of machining articles from a disc comprising superhard material, such as polycrystalline diamond (PCD) or polycrystalline cubic boron nitride (PCBN). The method includes providing a disc having a diameter of no more than 100 mm and a thickness of no more than 10 mm, providing a nesting pattern, scanning the disc to identify and locate any flaws in the disc and subsequently creating a machining program that takes into account said flaws.
    Type: Application
    Filed: May 14, 2021
    Publication date: January 11, 2024
    Applicant: Element Six Limited
    Inventors: Eric Curry, James McNamara
  • Publication number: 20220144646
    Abstract: A superhard construction comprises a substrate comprising a peripheral surface, an interface surface and a longitudinal axis and a super hard material layer formed over the substrate and having an exposed outer surface forming a working surface, a peripheral surface extending therefrom and an interface surface. One of the interface surface of the substrate or the interface surface of the super hard material layer comprises one or more projections arranged to project from the interface surface, the height of the one or more projections being between around 0.2 mm to around 1.0 mm measured from the lowest point on the interface surface from which the one or more projections extend.
    Type: Application
    Filed: November 15, 2021
    Publication date: May 12, 2022
    Applicants: ELEMENT SIX LIMITED, BAKER HUGHES INCORPORATED
    Inventors: ROGER WILLIAM NIGEL NILEN, NEDRET CAN, HUMPHREY SITHEBE, DAVID BOWES, DEREK NELMS
  • Patent number: 10689977
    Abstract: An earth-boring drilling tool comprises a cutting element. The cutting element comprises a substrate, a diamond table, and at least one sensing element formed from a doped diamond material disposed at least partially within the diamond table. A method for determining an at-bit measurement for an earth-boring drill bit comprises receiving an electrical signal generated within a doped diamond material disposed within a diamond table of a cutting element of the earth-boring drill bit, and correlating the electrical signal with at least one parameter during a drilling operation.
    Type: Grant
    Filed: July 10, 2018
    Date of Patent: June 23, 2020
    Assignees: Baker Hughes, a GE company, LLC, Element Six Limited
    Inventors: Danny E. Scott, Timothy Peter Mollart, John Robert Brandon
  • Patent number: 10626056
    Abstract: A construction comprising a sintered polycrystalline super-hard layer having mutually opposite reinforced boundaries, each of which is bonded to a respective reinforcement structure, in which the super-hard layer includes polycrystalline diamond (PCD) material or polycrystalline cubic boron nitride (PCBN) material. The construction will be configured such that the equivalent circle diameter of each reinforced boundary is at least ten times the mean thickness of the super-hard layer between them. The reinforcement structures will be substantially free of material having a melting point of less than 2,000 degrees Celsius, at least adjacent the reinforced boundaries.
    Type: Grant
    Filed: June 25, 2014
    Date of Patent: April 21, 2020
    Assignee: Element Six Limited
    Inventor: Karl Bernt-Ola Sandström
  • Publication number: 20190366442
    Abstract: A superhard construction comprises a substrate comprising a peripheral surface, an interface surface and a longitudinal axis and a super hard material layer formed over the substrate and having an exposed outer surface forming a working surface, a peripheral surface extending therefrom and an interface surface. One of the interface surface of the substrate or the interface surface of the super hard material layer comprises one or more projections arranged to project from the interface surface, the height of the one or more projections being between around 0.2 mm to around 1.0 mm measured from the lowest point on the interface surface from which the one or more projections extend.
    Type: Application
    Filed: April 23, 2019
    Publication date: December 5, 2019
    Applicants: ELEMENT SIX LIMITED, BAKER HUGHES INCORPORATED
    Inventors: ROGER WILLIAM NIGEL NILEN, NEDRET CAN, HUMPHREY SITHEBE, DAVID BOWES, DEREK NELMS
  • Patent number: 10443314
    Abstract: A method of forming an instrumented cutting element comprises forming a free-standing sintered diamond table having at least one chamber in the free-standing sintered diamond table, providing a doped diamond material within the at least one chamber, and attaching a substrate to the free-standing sintered diamond table to form an instrumented cutting element. The instrumented cutting element includes the doped diamond material disposed within the sintered diamond table on the substrate. A method of forming an earth-boring tool comprises attaching at least one instrumented cutting element to a body of an earth-boring tool. The at least one instrumented cutting element has a diamond table bonded to a substrate. The diamond table has at least one sensing element disposed at least partially within the diamond table. The at least one sensing element comprises a doped diamond material.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: October 15, 2019
    Assignees: Baker Hughes, a GE company, LLC, Element Six Limited
    Inventors: Danny E. Scott, Timothy Peter Mollart, John Robert Brandon
  • Patent number: 10337255
    Abstract: Cutting elements for earth-boring tools include one or more recesses and/or one or more protrusions in a cutting face of a volume of superabrasive material. The superabrasive material may be disposed on a substrate. The cutting face may be non-planar. The recesses and/or protrusions may include one or more linear segments. The recesses and/or protrusions may comprise discrete features that are laterally isolated from one another. The recesses and/or protrusions may have a helical configuration. The volume of superabrasive material may comprise a plurality of thin layers, at least two of which may differ in at least one characteristic. Methods of forming cutting elements include the formation of such recesses and/or protrusions in and/or on a cutting face of a volume of superabrasive material. Earth-boring tools include such cutting elements, and methods of forming earth-boring tools include attaching such a cutting element to a tool body.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: July 2, 2019
    Assignees: Baker Hughes Incorporated, Element Six Limited
    Inventors: Anthony A. DiGiovanni, Yavuz Kadioglu, Danny E. Scott, Matthew J. Meiners, Rudolf Carl Pessier, Nicholas J. Lyons, Clement D. van der Riet, Donald Royceton Herschell, Cornelis Roelof Jonker, Roger William Nilen, Gerard Peter Dolan
  • Patent number: 10309157
    Abstract: A cutting element for use in a drilling bit and/or a milling bit having a cutter body made of a substrate having an upper surface, and a superabrasive layer overlying the upper surface of the substrate. The cutting element further includes a sleeve extending around a portion of a side surface of the superabrasive layer and a side surface of the substrate, wherein the sleeve exerts a radially compressive force on the superabrasive layer.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: June 4, 2019
    Assignees: Baker Hughes Incorporated, Element Six (Production) (PTY) LTD., Element Six Limited
    Inventors: Anthony A. DiGiovanni, Nicholas J. Lyons, Matthew S. Hale, Konstantin E. Morozov, John H. Liversage, Danny E. Scott, L. Allen Sinor
  • Patent number: 10290385
    Abstract: A boron doped synthetic diamond material which has the following characteristics: a solvent window meeting one or both of the following criteria as measured by sweeping a potential of the boron doped synthetic diamond material with respect to a saturated calomel reference electrode in a solution containing only deionized water and 0.1M KNO3 as a supporting electrolyte at pH 6: the solvent window extends over a potential range of at least 4.1 V wherein end points of the potential range for the solvent window are defined when anodic and cathodic current density measured at the boron doped synthetic diamond material reaches 38 mA cm?2; and the solvent window extends over a potential range of at least 3.3 V wherein end points of the potential range for the solvent window are defined when anodic and cathodic current density measured at the boron doped synthetic diamond material reaches 0.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: May 14, 2019
    Assignee: Element Six Limited
    Inventors: Eleni Bitziou, Laura Anne Hutton, Julie Victoria MacPherson, Mark Edward Newton, Patrick Robert Unwin, Nicola Louise Palmer, Timothy Peter Mollart, Joseph Michael Dodson
  • Patent number: 10279454
    Abstract: A polycrystalline compact includes a plurality of diamond grains of micron size, submicron size, or both, and a plurality of diamond nanoparticles disposed in interstitial spaces between the plurality of diamond grains. A method of forming a polycrystalline compact includes combining a plurality of micron and/or submicron-sized diamond grains and a plurality of diamond nanoparticles to form a mixture and sintering the mixture in a presence of a carburized binder to form a polycrystalline hard material having a plurality of inter-bonded diamond grains and diamond nanoparticles. Cutting elements including a polycrystalline compact and earth-boring tools bearing such compacts are also disclosed.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 7, 2019
    Assignees: Baker Hughes Incorporated, Element Six Limited
    Inventors: Anthony A. DiGiovanni, Roger William Nigel Nilen
  • Patent number: 10221629
    Abstract: A polycrystalline super hard construction has a body of PCD material and a plurality of interstitial regions between inter-bonded diamond grains forming the PCD material. The body also has a first region substantially free of a solvent/catalyzing material which extends a depth from a working surface into the body of PCD material. A second region remote from the working surface includes solvent/catalyzing material in a plurality of the interstitial regions. A chamfer extends between the working surface and a peripheral side surface of the body of PCD material. The chamfer has a height which is the length along a plane perpendicular to the plane along which the working surface extends between the point of intersection of the chamfer with the working surface and the point of intersection of the chamfer and the peripheral side surface of the body of PCD material. The depth of the first region is greater than the height of the chamfer.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: March 5, 2019
    Assignee: Element Six Limited
    Inventors: Nedret Can, Habib Saridikmen, Roger William Nigel Nilen, Michael L. Doster, Anthony A. DiGiovanni, Matthew R. Isbell, Nicholas J. Lyons, Derek L. Nelms, Danny E. Scott
  • Patent number: 10202308
    Abstract: Composite material comprising aluminum nitride (AlN) material, less than 80 weight percent cubic boron nitride (cBN) grains dispersed within the AlN material and less that 5 weight percent sinter promotion material, the composite material including no more than about 1.5 percent porosity.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: February 12, 2019
    Assignee: ELEMENT SIX LIMITED
    Inventors: Leif Sandström, Selim Dagdag, Lars-Ivar Nilsson, Karolina Hannersjö
  • Patent number: 10166523
    Abstract: A support structure (40) for a PCD element (10) comprises a support (42) into which a PCD element (10) is locatable and a sealing element (48) for location in the support structure (40) and configured to protect a non-leached portion of a PCD element (10) during a leaching process. The support (42) is formed from or coated with a polyketone based plastics material.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: January 1, 2019
    Assignee: Element Six Limited
    Inventors: Terry Scanlon, Desmond Kenneth Sullivan, James Doyle, James Martin Redmond, Humphrey Samkelo Lungisani Sithebe
  • Patent number: 10138913
    Abstract: A cartridge assembly having a chamber for containing hydraulic fluid, an intensifier element capable of reciprocating in the chamber and displacing the hydraulic fluid responsive to a drive system acting on the intensifier element, and a piston capable of reciprocating in the chamber and being displaceable responsive to a change in the pressure of the hydraulic fluid. The cartridge assembly is configured so that when the pressure in the fluid increases responsive to a first force being applied by the drive system on the intensifier, the hydraulic fluid will exert a second force on the piston, the second force being greater than the first force; the mass of the hydraulic fluid being substantially conserved within the cartridge assembly.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: November 27, 2018
    Assignee: Element Six Limited
    Inventors: Maximilian Voggenreiter, Thomas Heinrich Voggenreiter, Michael Martin Petri
  • Patent number: 10071355
    Abstract: A method of making a cutter structure (1) comprises placing a pre-formed body (4) of hard material having a surface topography in a canister, placing an aggregated mass of grains of superhard material (2) over said surface topography, placing a punch (10) in contact with the superhard material (2), the punch (10) having a surface with a surface topography inverse to that of the hard material body to imprint a pattern in the superhard material (2) complementary to the surface topography of the punch (10). The surface of the punch (10) contacting the superhard material (2) being formed of a ceramic material that does not react chemically with the superhard material (12) and/or a sinter catalyst for the superhard material (2).
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: September 11, 2018
    Assignees: Element Six Abrasives S.A., Element Six Limited
    Inventors: Bo Christer Olofsson, Cornelis Roelof Jonker, Roger William Nigel Nilen, Stig Ake Andersin, John James Barry
  • Patent number: 10071354
    Abstract: A method of making a body of polycrystalline superhard material comprising placing an aggregated mass of grains of superhard material into a canister, placing a ceramic layer either in direct contact with the aggregated mass of grains of superhard material or in indirect contact therewith, the ceramic layer being spaced from the grains by an interlayer of material when present, the ceramic layer having a surface with surface topology, the surface topology imprinting a pattern in the aggregated mass of grains of superhard material complementary to the surface topology, the ceramic material and the material of the interlayer being such that they do not react chemically with the superhard material and/or a sinter catalyst material for the grains of superhard material. The aggregated mass of grains of superhard material and ceramic layer are subjected to a pressure of greater than 5.
    Type: Grant
    Filed: March 27, 2013
    Date of Patent: September 11, 2018
    Assignees: ELEMENT SIX ABRASIVES S.A., ELEMENT SIX LIMITED
    Inventors: Cornelis Roelof Jonker, Roger William Nigel Nilen, Maweja Kasonde, Stig Åke Andersin
  • Patent number: 10053755
    Abstract: A method for treating a super-hard structure, the method including heating the super-hard structure to a treatment temperature of at least 500 degrees centigrade and cooling the super-hard structure from the treatment temperature to a temperature of less than 200 degrees centigrade at a mean cooling rate of at least 1 degree centigrade per second and at most 100 degrees centigrade per second to provide a treated super-hard structure. A PCBN structure produced by the method may have flexural strength of at least 650 MPa.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: August 21, 2018
    Assignee: Element Six Limited
    Inventors: Declan John Carolan, Neal Murphy, Alojz Ivankovic
  • Patent number: 10047455
    Abstract: A method of providing well-shaped diamond grains of at most about 100 microns in size. The method includes providing a synthesis assembly comprising a source of carbon material, a plurality of seed grains on which diamond material can crystallize, and solvent-catalyst material for promoting the crystallization of the diamond grains, and subjecting the synthesis assembly to a condition for growing the diamond grains. The synthesis condition is maintained long enough for at least about half of the carbon material to be converted into the diamond grains.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: August 14, 2018
    Assignees: ELEMENT SIX ABRASIVES S.A., ELEMENT SIX LIMITED
    Inventors: Mhlonishwa Cyprian Nzama, Dale Anthony Thomson, Mark Gregory Munday
  • Patent number: 9975185
    Abstract: A tip for twist drill, comprising a super-hard structure joined to a substrate at an interface boundary coterminous with an end of the substrate, the super-hard structure comprising sintered polycrystalline material comprising super-hard grains, the super-hard structure defining a super-hard end surface opposite the interface boundary and a plurality of cutting edges configured for boring into a body in use; the super-hard end surface including a center point or chisel edge, and comprising a plurality of surface regions configured such that respective planes tangential to each of the surface regions are disposed at substantially different angles from the axis of rotation of the tip in use. Precursor constructions for use in manufacturing the tips as well as methods for making the precursor constructions and the tips are disclosed.
    Type: Grant
    Filed: June 12, 2012
    Date of Patent: May 22, 2018
    Assignees: Element Sux Abrasives S.A., Element Six Limited
    Inventors: Maweja Kasonde, Robert Fries, John James Barry, Cornelis Roelof Jonker
  • Patent number: 9844814
    Abstract: A tip (20) for a rotary machine tool comprising a superhard structure (12) joined to a cemented carbide substrate 14 by means of at least one intermediate layer (161, 62, 163) disposed between the superhard structure (12) and the cemented carbide substrate (14), the intermediate layer or layers (161, 162, 163) comprising grains of superhard material and grains of a metal carbide material dispersed in a metal binder material.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: December 19, 2017
    Assignees: Element Six Abrasives S.A., Element Six Limited
    Inventors: Cornelis Roelof Jonker, Robert Fries, Maweja Kasonde, John James Barry