Patents Assigned to Elm Technology Corporation
  • Patent number: 6551857
    Abstract: A Three-Dimensional Structure (3DS) Memory allows for physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized. One control logic circuit suffices for several memory circuits, reducing cost. Fabrication of 3DS memory involves thinning of the memory circuit to less than 50 &mgr;m in thickness and bonding the circuit to a circuit stack while still in wafer substrate form. Fine-grain high density interlayer vertical bus connections are used. The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.
    Type: Grant
    Filed: February 6, 2001
    Date of Patent: April 22, 2003
    Assignee: Elm Technology Corporation
    Inventor: Glenn J. Leedy
  • Publication number: 20030057564
    Abstract: A Three-Dimensional Structure (3DS) Memory allows for physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized. One control logic circuit suffices for several memory circuits, reducing cost. Fabrication of 3DS memory involves thinning of the memory circuit to less than 50 &mgr;m in thickness and bonding the circuit to a circuit stack while still in wafer substrate form. Fine-grain high density interlayer vertical bus connections are used. The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.
    Type: Application
    Filed: August 19, 2002
    Publication date: March 27, 2003
    Applicant: Elm Technology Corporation
    Inventor: Glenn J. Leedy
  • Publication number: 20020135075
    Abstract: A Three-Dimensional Structure (3DS) Memory allows for physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized. One control logic circuit suffices for several memory circuits, reducing cost. Fabrication of 3DS memory involves thinning of the memory circuit to less than 50 &mgr;m in thickness and bonding the circuit to a circuit stack while still in wafer substrate form. Fine-grain high density inter-layer vertical bus connections are used. The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.
    Type: Application
    Filed: May 15, 2002
    Publication date: September 26, 2002
    Applicant: Elm Technology Corporation
    Inventor: Glenn J. Leedy
  • Publication number: 20020132465
    Abstract: A Three-Dimensional Structure (3DS) Memory allows for physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized. One control logic circuit suffices for several memory circuits, reducing cost. Fabrication of 3DS memory involves thinning of the memory circuit to less than 50 &mgr;m in thickness and bonding the circuit to a circuit stack while still in wafer substrate form. Fine-grain high density inter-layer vertical bus connections are used. The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.
    Type: Application
    Filed: May 13, 2002
    Publication date: September 19, 2002
    Applicant: Elm Technology Corporation
    Inventor: Glenn J. Leedy
  • Publication number: 20020045297
    Abstract: General purpose methods for the fabrication of integrated circuits from flexible membranes formed of very thin low stress dielectric materials, such as silicon dioxide or silicon nitride, and semiconductor layers. Semiconductor devices are formed in a semiconductor layer of the membrane. The semiconductor membrane layer is initially formed from a substrate of standard thickness, and all but a thin surface layer of the substrate is then etched or polished away. In another version, the flexible membrane is used as support and electrical interconnect for conventional integrated circuit die bonded thereto, with the interconnect formed in multiple layers in the membrane. Multiple die can be connected to one such membrane, which is then packaged as a multi-chip module. Other applications are based on (circuit) membrane processing for bipolar and MOSFET transistor fabrication, low impedance conductor interconnecting fabrication, flat panel displays, maskless (direct write) lithography, and 3D IC fabrication.
    Type: Application
    Filed: February 5, 2001
    Publication date: April 18, 2002
    Applicant: Elm Technology Corporation.
    Inventor: Glenn Joseph Leedy
  • Publication number: 20020014673
    Abstract: General purpose methods for the fabrication of integrated circuits from flexible membranes formed of very thin low stress dielectric materials, such as silicon dioxide or silicon nitride, and semiconductor layers. Semiconductor devices are formed in a semiconductor layer of the membrane. The semiconductor membrane layer is initially formed from a substrate of standard thickness, and all but a thin surface layer of the substrate is then etched or polished away. In another version, the flexible membrane is used as support and electrical interconnect for conventional integrated circuit die bonded thereto, with the interconnect formed in multiple layers in the membrane. Multiple die can be connected to one such membrane, which is then packaged as a multi-chip module. Other applications are based on (circuit) membrane processing for bipolar and MOSFET transistor fabrication, low impedance conductor interconnecting fabrication, flat panel displays, maskless (direct write) lithography, and 3D IC fabrication.
    Type: Application
    Filed: February 5, 2001
    Publication date: February 7, 2002
    Applicant: Elm Technology Corporation
    Inventor: Glenn Joseph Leedy
  • Publication number: 20020005729
    Abstract: A single gas tight system which performs multi-functions including reducing the thickness of oxides on contact pads and probing, testing, burn-in, repairing, programming and binning of integrated circuits. A system according to one embodiment of the present invention includes: (a) a gas tight chamber having (1) a plurality of modules each having a holding fixture, a wafer, a probing device, an electronic circuit board, and a temperature control device, (2) a gas source for supplying non-oxidizing gases such as nitrogen and hydrogen into the chamber, (3) a handler for moving the wafers and the probing devices, and (b) a computer coupled to the chamber for controlling and communicating with the handler, the temperature control devices, the holding fixtures and the probing devices. A holding fixture holds a wafer having integrated circuits and aligns the wafer to a probing device.
    Type: Application
    Filed: September 6, 2001
    Publication date: January 17, 2002
    Applicant: Elm Technology Corporation.
    Inventor: Glenn Leedy
  • Publication number: 20010033030
    Abstract: A Three-Dimensional Structure (3DS) Memory allows for physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized. One control logic circuit suffices for several memory circuits, reducing cost. Fabrication of 3DS memory involves thinning of the memory circuit to less than 50 &mgr;m in thickness and bonding the circuit to a circuit stack while still in wafer substrate form. Fine-grain high density interlayer vertical bus connections are used. The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.
    Type: Application
    Filed: February 6, 2001
    Publication date: October 25, 2001
    Applicant: Elm Technology Corporation
    Inventor: Glenn J. Leedy
  • Patent number: 6288561
    Abstract: A single gas tight system which performs multi-functions including reducing the thickness of oxides on contact pads and probing, testing, burn-in, repairing, programming and binning of integrated circuits. A system according to one embodiment of the present invention includes: (a) a gas tight chamber having (1) a plurality of modules each having a holding fixture, a wafer, a probing device, an electronic circuit board, and a temperature control device, (2) a gas source for supplying non-oxidizing gases such as nitrogen and hydrogen into the chamber, (3) a handler for moving the wafers and the probing devices, and (b) a computer coupled to the chamber for controlling and communicating with the handler, the temperature control devices, the holding fixtures and the probing devices. A holding fixture holds a wafer having integrated circuits and aligns the wafer to a probing device.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: September 11, 2001
    Assignee: Elm Technology Corporation
    Inventor: Glenn Leedy
  • Patent number: 6133640
    Abstract: A Three-Dimensional Structure (3DS) Memory allows for physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized. One control logic circuit suffices for several memory circuits, reducing cost. Fabrication of 3DS memory involves thinning of the memory circuit to less than 50 .mu.m in thickness and bonding the circuit to a circuit stack while still in wafer substrate form. Fine-grain high density inter-layer vertical bus connections are used. The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.
    Type: Grant
    Filed: November 17, 1997
    Date of Patent: October 17, 2000
    Assignee: ELM Technology Corporation
    Inventor: Glenn J. Leedy
  • Patent number: 6020257
    Abstract: General purpose methods for the fabrication of integrated circuits from flexible membranes formed of very thin low stress dielectric materials, such as silicon dioxide or silicon nitride, and semiconductor layers. Semiconductor devices are formed in a semiconductor layer of the membrane. The semiconductor membrane layer is initially formed from a substrate of standard thickness, and all but a thin surface layer of the substrate is then etched or polished away. In another version, the flexible membrane is used as support and electrical interconnect for conventional integrated circuit die bonded thereto, with the interconnect formed in multiple layers in the membrane. Multiple die can be connected to one such membrane, which is then packaged as a multi-chip module. Other applications are based on (circuit) membrane processing for bipolar and MOSFET transistor fabrication, low impedance conductor interconnecting fabrication, flat panel displays, maskless (direct write) lithography, and 3D IC fabrication.
    Type: Grant
    Filed: January 7, 1997
    Date of Patent: February 1, 2000
    Assignee: Elm Technology Corporation
    Inventor: Glenn Joseph Leedy
  • Patent number: 6008126
    Abstract: General purpose methods for the fabrication of integrated circuits from flexible membranes formed of very thin low stress dielectric materials, such as silicon dioxide or silicon nitride, and semiconductor layers. Semiconductor devices are formed in a semiconductor layer of the membrane. The semiconductor membrane layer is initially formed from a substrate of standard thickness, and all but a thin surface layer of the substrate is then etched or polished away. In another version, the flexible membrane is used as support and electrical interconnect for conventional integrated circuit die bonded thereto, with the interconnect formed in multiple layers in the membrane. Multiple die can be connected to one such membrane, which is then packaged as a multi-chip module. Other applications are based on (circuit) membrane processing for bipolar and MOSFET transistor fabrication, low impedance conductor interconnecting fabrication, flat panel displays, maskless (direct write) lithography, and 3D IC fabrication.
    Type: Grant
    Filed: February 23, 1998
    Date of Patent: December 28, 1999
    Assignee: Elm Technology Corporation
    Inventor: Glenn Joseph Leedy
  • Patent number: 5985693
    Abstract: General purpose methods for the fabrication of integrated circuits from flexible membranes formed of very thin low stress dielectric materials, such as silicon dioxide or silicon nitride, and semiconductor layers. Semiconductor devices are formed in a semiconductor layer of the membrane. The semiconductor membrane layer is initially formed from a substrate of standard thickness, and all but a thin surface layer of the substrate is then etched or polished away. In another version, the flexible membrane is used as support and electrical interconnect for conventional integrated circuit die bonded thereto, with the interconnect formed in multiple layers in the membrane. Multiple die can be connected to one such membrane, which is then packaged as a multi-chip module. Other applications are based on (circuit) membrane processing for bipolar and MOSFET transistor fabrication, low impedance conductor interconnecting fabrication, flat panel displays, maskless (direct write) lithography, and 3D IC fabrication.
    Type: Grant
    Filed: May 2, 1997
    Date of Patent: November 16, 1999
    Assignee: ELM Technology Corporation
    Inventor: Glenn Joseph Leedy
  • Patent number: 5946559
    Abstract: General purpose methods for the fabrication of integrated circuits from flexible membranes formed of very thin low stress dielectric materials, such as silicon dioxide or silicon nitride, and semiconductor layers. Semiconductor devices are formed in a semiconductor layer of the membrane. The semiconductor membrane layer is initially formed from a substrate of standard thickness, and all but a thin surface layer of the substrate is then etched or polished away. In another version, the flexible membrane is used as support and electrical interconnect for conventional integrated circuit die bonded thereto, with the interconnect formed in multiple layers in the membrane. Multiple die can be connected to one such membrane, which is then packaged as a multi-chip module. Other applications are based on (circuit) membrane processing for bipolar and MOSFET transistor fabrication, low impedance conductor interconnecting fabrication, flat panel displays, maskless (direct write) lithography, and 3D IC fabrication.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: August 31, 1999
    Assignee: Elm Technology Corporation
    Inventor: Glenn Joseph Leedy
  • Patent number: 5915167
    Abstract: A Three-Dimensional Structure (3DS) Memory allows for physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized. One control logic circuit suffices for several memory circuits, reducing cost. Fabrication of 3DS memory involves thinning of the memory circuit to less than 50 .mu.m in thickness and bonding the circuit to a circuit stack while still in wafer substrate form. Fine-grain high density inter-layer vertical bus connections are used. The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.
    Type: Grant
    Filed: April 4, 1997
    Date of Patent: June 22, 1999
    Assignee: Elm Technology Corporation
    Inventor: Glenn J. Leedy
  • Patent number: 5869354
    Abstract: General purpose methods for the fabrication of integrated circuits from flexible membranes formed of very thin low stress dielectric materials, such as silicon dioxide or silicon nitride, and semiconductor layers. Semiconductor devices are formed in a semiconductor layer of the membrane. The semiconductor membrane layer is initially formed from a substrate of standard thickness, and all but a thin surface layer of the substrate is then etched or polished away. In another version, the flexible membrane is used as support and electrical interconnect for conventional integrated circuit die bonded thereto, with the interconnect formed in multiple layers in the membrane. Multiple die can be connected to one such membrane, which is then packaged as a multi-chip module. Other applications are based on (circuit) membrane processing for bipolar and MOSFET transistor fabrication, low impedance conductor interconnecting fabrication, flat panel displays, maskless (direct write) lithography, and 3D IC fabrication.
    Type: Grant
    Filed: September 30, 1994
    Date of Patent: February 9, 1999
    Assignee: Elm Technology Corporation
    Inventor: Glenn Joseph Leedy
  • Patent number: 5840593
    Abstract: General purpose methods for the fabrication of integrated circuits from flexible membranes formed of very thin low stress dielectric materials, such as silicon dioxide or silicon nitride, and semiconductor layers. Semiconductor devices are formed in a semiconductor layer of the membrane. The semiconductor membrane layer is initially formed from a substrate of standard thickness, and all but a thin surface layer of the substrate is then etched or polished away. In another version, the flexible membrane is used as support and electrical interconnect for conventional integrated circuit die bonded thereto, with the interconnect formed in multiple layers in the membrane. Multiple die can be connected to one such membrane, which is then packaged as a multi-chip module. Other applications are based on (circuit) membrane processing for bipolar and MOSFET transistor fabrication, low impedance conductor interconnecting fabrication, flat panel displays, maskless (direct write) lithography, and 3D IC fabrication.
    Type: Grant
    Filed: March 10, 1997
    Date of Patent: November 24, 1998
    Assignee: Elm Technology Corporation
    Inventor: Glenn Joseph Leedy
  • Patent number: 5834334
    Abstract: General purpose methods for the fabrication of integrated circuits from flexible membranes formed of very thin low stress dielectric materials, such as silicon dioxide or silicon nitride, and semiconductor layers. Semiconductor devices are formed in a semiconductor layer of the membrane. The semiconductor membrane layer is initially formed from a substrate of standard thickness, and all but a thin surface layer of the substrate is then etched or polished away. In another version, the flexible membrane is used as support and electrical interconnect for conventional integrated circuit die bonded thereto, with the interconnect formed in multiple layers in the membrane. Multiple die can be connected to one such membrane, which is then packaged as a multi-chip module. Other applications are based on (circuit) membrane processing for bipolar and MOSFET transistor fabrication, low impedance conductor interconnecting fabrication, flat panel displays, maskless (direct write) lithography, and 3D IC fabrication.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: November 10, 1998
    Assignee: ELM Technology Corporation
    Inventor: Glenn Joseph Leedy
  • Patent number: 5725995
    Abstract: Each transistor or logic unit on an integrated circuit wafer is tested prior to interconnect metallization. By means of CAD software, the transistor or logic units placement net list is revised to substitute redundant defect-free logic units for defective ones. Then the interconnect metallization is laid down and patterned under control of a CAD computer system. Each die in the wafer thus has its own interconnect scheme, although each die is functionally equivalent, and yields are much higher than with conventional testing at the completed circuit level.The individual transistor or logic unit testing is accomplished by a specially fabricated flexible tester surface made in one embodiment of several layers of flexible silicon dioxide, each layer containing vias and conductive traces leading to thousands of microscopic metal probe points on one side of the test surface. The probe points electrically contact the contacts on the wafer under test by fluid pressure.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: March 10, 1998
    Assignee: ELM Technology Corporation
    Inventor: Glenn J. Leedy
  • Patent number: 5654220
    Abstract: General purpose methods for the fabrication of integrated circuits from flexible membranes formed of very thin low stress dielectric materials, such as silicon dioxide or silicon nitride, and semiconductor layers. Semiconductor devices are formed in a semiconductor layer of the membrane. The semiconductor membrane layer is initially formed from a substrate of standard thickness, and all but a thin surface layer of the substrate is then etched or polished away. In another version, the flexible membrane is used as support and electrical interconnect for conventional integrated circuit die bonded thereto, with the interconnect formed in multiple layers in the membrane. Multiple die can be connected to one such membrane, which is then packaged as a multi-chip module. Other applications are based on (circuit) membrane processing for bipolar and MOSFET transistor fabrication, low impedance conductor interconnecting fabrication, flat panel displays, maskless (direct write) lithography, and 3D IC fabrication.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: August 5, 1997
    Assignee: ELM Technology Corporation
    Inventor: Glenn Joseph Leedy