Abstract: Methods and systems for the devolatilization of thermally produced liquids to raise the flash point are disclosed. Various methods and apparatus can be used to effectively reduce the volatile components, such as wiped film evaporator, falling film evaporator, flash column, packed column, devolatilization vessel or tank.
Type:
Application
Filed:
August 26, 2013
Publication date:
February 27, 2014
Applicant:
Ensyn Renewables, Inc.
Inventors:
Geoffrey Hopkins, Barry A. Freel, Doug Clarke
Abstract: Low water-containing biomass-derived pyrolysis oils and processes for producing them are provided. The process includes condensing pyrolysis gases including condensable pyrolysis gases and non-condensable gases to separate the condensable pyrolysis gases from the non-condensable gases, the non-condensable gases having a water content, drying the non-condensable pyrolysis gases to reduce the water content of the-non-condensable gases to form reduced-water non-condensable pyrolysis gases, and providing the reduced-water non-condensable pyrolysis gases to a pyrolysis reactor for forming the biomass-derived pyrolysis oil.
Abstract: Char-handling processes for controlling overall heat balance, ash accumulation, and afterburn in a reheater are provided. Carbonaceous biomass feedstock is pyrolyzed using a heat transfer medium forming pyrolysis products and a spent heat transfer medium. The spent heat transfer medium is separated into segregated char and char-depleted spent heat transfer medium. The char-depleted spent heat transfer medium is introduced into a dense bed of heat transfer medium fluidized by a stream of oxygen-containing regeneration gas. All or a portion of the segregated char is combusted in the dense bed using the stream of oxygen-containing regeneration gas. A portion of the segregated char may be exported out of the pyrolysis system to control the overall heat balance and ash accumulation.
Type:
Grant
Filed:
July 15, 2010
Date of Patent:
August 6, 2013
Assignee:
Ensyn Renewables, Inc.
Inventors:
Paolo Palmas, Paul Alvin Sechrist, Daniel N. Myers, Sid Kulprathipanja, Stanley Joseph Frey, Barry Freel
Abstract: Described herein are systems and methods for reducing cumulative deposition and unwanted secondary thermal reactions in pyrolysis and other thermal conversion processes. In an embodiment, a system comprises a device, referred to as a reamer, for removing product deposits between thermal conversion and condensation operations of a pyrolysis process. The reamer may comprise, but is not limited to, a mechanical reciprocating rod or ram, a mechanical auger, a drill bit, a high-temperature wiper, brush, or punch to remove deposits and prevent secondary reactions. Alternatively or in addition, the reamer may use a high-velocity curtain or jet (i.e., a hydraulic or pneumatic stream) of vapor, product gas, recycle gas, other gas jet or non-condensing liquid to remove deposits. Preferably, the reamer removes deposits during the pyrolysis process allowing for continuous operation of the pyrolysis process.
Abstract: A rapid thermal conversion process for efficiently converting wood, other biomass materials, and other carbonaceous feedstock (including hydrocarbons) into high yields of valuable liquid product, e.g., bio-oil, on a large scale production. Biomass material, e.g., wood, is feed to a conversion system where the biomass material is mixed with an upward stream of hot heat carriers, e.g., sand, that thermally convert the biomass into a hot vapor stream. The hot vapor stream is rapidly quenched with quench media in one or more condensing chambers located downstream of the conversion system. The rapid quenching condenses the vapor stream into liquid product, which is collected from the condensing chambers as a valuable liquid product. The liquid product may itself be used as the quench media.
Abstract: A method of producing activated carbon comprising the steps of a) pyrolysing corn derivatives to generate char and b) activating the char to produce activated corn carbon.
Type:
Grant
Filed:
June 17, 2003
Date of Patent:
April 3, 2007
Assignees:
Ensyn Renewables, Inc., A E Staley Manufacturing Company
Inventors:
Barry Freel, Gin Liaw, Cameron Ferguson
Abstract: This invention is directed to a method of preparing a natural resin by liquefying wood, bark, forest residues, wood industry residues, or other biomass using rapid destructive distillation (fast pyrolysis). Fast pyrolysis produces both vapors and char from biomass, and following removal of the char from the product vapors, a liquid pitch product is recovered and processed by distillation, evaporation, or a combination thereof, in order to obtain a natural resin which may be in either liquid or solid form. The natural resin comprises a total phenolic content from about 30% to about 80% (w/w), and is a highly-reactive ligninic compound that has been found to be suitable for use within resin formulations without requiring any further extraction or fractionation procedures. Resins comprising up to 60% natural resin have been prepared and tested in board production and found to exhibit similar properties associated with commercially available resins.