Abstract: A multimode launch system to be connected to an Optical Time-Domain Reflectometer (OTDR) for use in performing at least one OTDR measurement on a multi-fiber array Device Under Test (DUT), the multimode launch system comprising: an optical switch being connectable to the OTDR during use; a launch array device having an end being connectable to the optical switch and another end being connectable to the multi-fiber array DUT during use, the launch array device having a plurality of multimode launch optical fibers each having at least one first guidance parameter being smaller than a corresponding one of at least one second guidance parameter of at least one multimode optical fiber of the optical switch; and a multi-fiber mode conditioner along the launch array device for inducing a preferential attenuation of higher-order optical modes of test light propagated into the multi-fiber array DUT during use.
Abstract: An inspection system for inspecting a multiple-fiber connector is provided. The inspection system includes a microscope probe and a probe tip configured to provide an optical path between the microscope probe and the multiple-fiber connector. The probe tip and microscope probe are configured so that the field of view of the microscope probe is sufficiently large to cover a portion of the connector surface encompassing a plurality of the optical fiber endfaces. The system further includes a shifting mechanism operable to shift the field of view of the microscope probe between at least two discrete positions over the connector surface. Each discrete position encompasses a different subset of the multiple optical fiber endfaces and optionally at least one positioning reference. A probe tip and a method of inspection are also provided.
Type:
Grant
Filed:
June 27, 2016
Date of Patent:
January 8, 2019
Assignee:
EXFO Inc.
Inventors:
Denis Lafrance, Bernard Ruchet, Robert Baribault
Abstract: There is provided a method to discriminate NLE-induced signal deformation from ASE-noise on polarization multiplexed signals, in order to measure the OSNR under NLE conditions and/or characterize the NLE-induced signal deformation. In accordance with one aspect, the method is based on the acquisition of optical spectrum traces when the (data-carrying) optical communication signal is partially or completely extinguished (ASE-noise only), as well as with a live optical communication signal. Comparing traces acquired with different conditions and/or at different dates allows discrimination of the signal contribution, the ASE-noise contribution and the NLE-induced deformations on the SUT.
Abstract: There is provided a modal distribution conditioner comprising the combination of a mandrel-wrapped optical fiber and an adjustable and fixable loop of optical fiber. It is noted that light entering the modal distribution conditioner is to be generally overfilled compared with the target encircled flux function (as defined by the Standard). The mandrel wrapping introduces macrobends to the optical fiber, inducing modal pre-filtering that roughly transforms the initially overfilled modal distribution to be close to compliance with the appropriate Standard. However, the modal distribution of light having traversed the fixed mandrel typically remains somewhat overfilled. The adjustable loop provides for the fine-tuning of the modal distribution, in conformity with the Standard. Once the requirements defined by the Standard are met, the adjustable loop may be secured in place such that modal distribution becomes fixed and remain stable.
Abstract: An OTDR device and method for characterizing one or more events in an optical fiber link are provided. A plurality of light acquisitions is performed. For each light acquisition, test light pulses are propagated in the optical fiber link and the corresponding return light signals from the optical fiber link are detected. The light acquisitions are performed under different acquisition conditions, for example using different pulsewidths or wavelengths. Parameters characterizing the event are derived using the detected return signal from at least two of the plurality of light acquisitions.
Abstract: There are provided methods and devices for determining a quality parameter characterizing an optical communication signal, the methods being performed by signal detection devices. At the transmitting end, there are obtained a signal power P1 of a first optical signal, a signal power P2 of a second optical signal, a signal power P3 of a third optical signal, optionally a signal power P4 of a fourth optical signal, and a total signal power Ps of a channel where the first, second, third and optional fourth optical signals are located. At a detection point, there are further obtained a signal power P1? of the first optical signal, a signal power P2? of the second optical signal, a signal power P3? of the third optical signal and optionally a signal power P4? of the fourth optical signal. There are then determined a signal deformation factor SDF and/or an optical signal to ASE noise ratio OSNR from the obtained signal powers.
Abstract: There is provided a mating assembly for mating a fiber-optic termination comprising a fiber-optic ferrule to an optical test instrument. The mating assembly comprises: a holding body having internal tubular dimensions substantially complementary to corresponding external dimensions of the fiber-optic ferrule of said fiber-optic termination, to hold the fiber-optic ferrule in a given alignment relative to the optical test instrument; and at least one deformable elastomeric feature extending inwardly in the holding body to frictionally engage on a smooth external surface of said fiber-optic ferrule and to provide friction thereon to retain said fiber-optic ferrule.
Abstract: The fiber inspection microscope and power measurement system for inspecting an endface of an optical fiber at an angle-polished connector generally has: a mating interface for receiving the angle-polished connector, the endface causing a mean propagation direction of light exiting the optical fiber at endface to be tilted relative to an imaging path of the system; a converging element to be optically coupled to the endface and being configured to receive the tilted light and to redirect the tilted light toward the imaging path of the fiber inspection microscope system; and a power detection assembly optically coupled to the converging element, the power detection assembly being configured to detect an optical power associated with the tilted light redirected by the converging element.
Abstract: A multimode launch system to be connected to an Optical Time-Domain Reflectometer (OTDR) for use in performing at least one OTDR measurement on a multi-fiber array Device Under Test (DUT), the multimode launch system comprising: an optical switch being connectable to the OTDR during use; a launch array device having an end being connectable to the optical switch and another end being connectable to the multi-fiber array DUT during use, the launch array device having a plurality of multimode launch optical fibers each having at least one first guidance parameter being smaller than a corresponding one of at least one second guidance parameter of at least one multimode optical fiber of the optical switch; and a multi-fiber mode conditioner along the launch array device for inducing a preferential attenuation of higher-order optical modes of test light propagated into the multi-fiber array DUT during use.
Abstract: There is provided an adapter tip to be employed with an optical-fiber inspection microscope probe and an optical-fiber inspection microscope system suitable for imaging the optical-fiber endface of an angled-polished optical-fiber connector deeply recessed within a connector adapter. The adapter tip or microscope system comprises a relay lens system having at least a first relay lens which is disposed so as to directly receive light reflected from the optical-fiber endface during inspection, the lens axis of the first relay lens being offset relative to the optical-fiber endface so as to deviate light reflected from the optical-fiber endface towards the optical-fiber axis of the connector.
Abstract: A test system and a related method, the system comprising a test processing agent and local test device(s). The test processing agent processes test measurements related to a network-under-test into test results. The test processing agent is decoupled from the network-under-test, e.g., by being reachable through a network communication link distinct from the network-under-test. The local test device comprises a firmware module and a network interface (NI) module. The firmware module depends on external instructions for initiating a test sequence on the network-under-test. The NI module comprises at least one physical port connectable to the network-under-test. The physical port is used for initiating the test sequence. The test processing agent receives the test measurements following the initiation of the test sequence by the local test device and allows access to the test results.
Type:
Grant
Filed:
December 3, 2014
Date of Patent:
January 2, 2018
Assignee:
EXFO Inc.
Inventors:
Dominic Lapierre, Bruno Giguere, Sylvain Nadeau, Gilles Buteau
Abstract: A fiber inspection system for inspecting optical-fiber endfaces of a multiple-fiber connector is provided that includes a housing structure, a mating interface fixed relative to the housing structure for interfacing with the multiple-fiber connector, and an imaging assembly. The imaging assembly is enclosed in the housing structure and defines an inspection plane and an image plane, at least a plurality of the optical-fiber endfaces being disposed on the inspection plane, to within a focusing range, when the multiple-fiber connector is mated to the mating interface. The imaging assembly also defines an imaging axis between an inspection point on the inspection plane and a detection point on the image plane, and includes an alignment module disposed between the inspection plane and the image plane and controllable to move the inspection point across the inspection plane for selectively inspecting one or more of the optical-fiber endfaces.
Abstract: A polarization-related characteristic of an optical path is determined from a predetermined function of the mean-square of a plurality of differences between polarization-analyzed optical power parameters corresponding to pairs of wavelengths mutually spaced about a midpoint wavelength by a small optical frequency difference. At least some of the said differences correspond to wavelength pairs measured under conditions where at least one of midpoint wavelength, input state of polarization (I-SOP) or analyzed state of polarization (A-SOP) of a pair is different.
Type:
Grant
Filed:
February 14, 2013
Date of Patent:
November 28, 2017
Assignee:
EXFO INC
Inventors:
Normand Cyr, Hongxin Chen, Gregory Walter Schinn
Abstract: A passive optical network (PON) device and method for optical power measurement along an optical transmission path supporting bidirectional propagation of downstream light and upstream light between two network elements of a PON is provided. The device includes an optical power splitter assembly extracting respective portions of the upstream and downstream light, and an upstream wavelength analyzer determining, from the extracted upstream light, an upstream spectral characteristic of the upstream light. The device also includes a processing unit determining, based on the upstream spectral characteristic, a downstream spectral characteristic of a downstream signal of interest among a plurality of downstream signals of the downstream light, and a downstream filter assembly filtering the extracted downstream light to select a portion of the downstream signal of interest.
Type:
Grant
Filed:
September 13, 2016
Date of Patent:
November 28, 2017
Assignee:
EXFO INC.
Inventors:
Bernard Ruchet, Mario L'Heureux, Daniel Gariepy
Abstract: There is provided a method for measuring an optical power attenuation value of a multimode DUT. The method generally has, using an optical source, propagating test light along a multimode device link having a first multimode device, the multimode DUT and a second multimode device serially connected to one another; said propagating including inducing a preferential attenuation of high-order optical fiber modes of the test light along the first multimode device and along the second multimode device; using an optical power detector, detecting an optical signal resulting from the propagation of the test light along the multimode device link and transmitting an output signal based on the detected optical signal; and using a processor, determining the optical power attenuation value of the multimode DUT based on the output signal.
Abstract: The computer readable memory has recorded thereon instruction code for execution by a computing device for use with an optical power loss measurement (OPLM) system. The instruction code generally comprises: code for displaying a first set of instructions including measuring a first power value of test light outputted from a first reference optical waveguide; code for displaying a second set of instructions including measuring a second power value of test light outputted from a reference waveguide link including the first reference optical waveguide connected in series to a second reference optical waveguide; code for displaying a third set of instructions including measuring a reference power value of the OPLM system resulting from the propagation of light from via the reference waveguide link; and code for determining a corrected reference power value based on the reference power value and on the first and second power values.