Patents Assigned to ExxonMobil Upstream Research Company
  • Patent number: 11530581
    Abstract: Methods and apparatus for managing fluid flow in pipes. An exemplary method includes initializing models of at least two fluid pads and one or more pipe elements, the models of the fluid pads comprising material points; for each of the material points, determining: an integration weight; and a material state; (a) for each of the fluid pads, discretizing governing fluid flow equations on a numerical grid, wherein the numerical grid is constrained within the pipe elements; (b) solving the discretized equations to generate nodal solutions; (c) constructing material point solutions from the nodal solutions; and until end criteria are met: updating the models of the fluid pads with the material point solutions; and repeating (a)-(c). An exemplary fluid flow data analysis system includes a processor and a display configured to display graphical representations of a fluid flow model, wherein the system is configured to manage fluid flow in pipes.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: December 20, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Holger A. Meier, Shekhar V. Gosavi, Sandeep Kumar
  • Patent number: 11521122
    Abstract: A method and apparatus for automated seismic interpretation (ASI), including: obtaining trained models comprising a geologic scenario from a model repository, wherein the trained models comprise executable code; obtaining test data comprising geophysical data for a subsurface region; and performing an inference on the test data with the trained models to generate a feature probability map representative of subsurface features. A method and apparatus for machine learning, including: an ASI model; a training dataset comprising seismic images and a plurality of data portions; a plurality of memory locations, each comprising a replication of the ASI model and a different data portion of the training dataset; a plurality of data augmentation modules, each identified with one of the plurality of memory locations; a training module configured to receive output from the plurality of data augmentation modules; and a model repository configured to receive updated models from the training module.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: December 6, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Wei D. Liu, Huseyin Denli, Kuang-Hung Liu, Michael H. Kovalski, Victoria M. Som De Cerff, Cody J. MacDonald, Diego A. Hernandez
  • Patent number: 11519260
    Abstract: A method of operating a reciprocating system including a rod pump for pumping liquids from a wellbore. The method includes determining rod position of the rod pump using a wave-based technology detector, the rod pump comprising a rod string carrying a down hole pump and a drive system including a drive motor coupled to the rod string through a transmission unit; communicating rod position to a data acquisition system receiving one or more other measurements of rod pump operation to determine rod pump performance; and adjusting at least one operating parameter to enhance rod pump performance. A method of determining operating parameters and optimizing performance of an oil or gas production rod pump, and a system for determining rod position of an oil or gas production rod pump are also provided.
    Type: Grant
    Filed: October 1, 2019
    Date of Patent: December 6, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Michael C. Romer, Tony W. Hord
  • Patent number: 11520077
    Abstract: A method for generating one or more reservoir models using machine learning is provided. Generating reservoir models is typically a time-intensive idiosyncratic process. However, machine learning may be used to generate one or more reservoir models that characterize the subsurface. The machine learning may use geological data, geological concepts, reservoir stratigraphic configurations, and one or more input geological models in order to generate the one or more reservoir models. As one example, a generative adversarial network (GAN) may be used as the machine learning methodology. The GAN includes two neural networks, including a generative network (which generates candidate reservoir models) and a discriminative network (which evaluates the candidate reservoir models), contest with each other in order to generate the reservoir models.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: December 6, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Huseyin Denli, Cody J. MacDonald, Victoria M. Som De Cerff
  • Patent number: 11512572
    Abstract: Methods of stimulating a hydrocarbon well are disclosed herein. The hydrocarbon well includes a wellbore that extends within a subterranean formation and a tubular that extends within the wellbore and defines a tubular conduit. The methods include retaining a sealing structure within the tubular conduit and, during the retaining, stimulating a zone of the subterranean formation. Subsequent to the stimulating, the methods include fluidly isolating the zone of the subterranean formation from the uphole region by at least partially sealing the plurality of perforations. Subsequent to the fluidly isolating, the methods include moving the sealing structure in a downhole direction within the tubular conduit. The methods also include repeating the retaining, the stimulating, the fluidly isolating, and the moving a plurality of times to stimulate a plurality of corresponding zones of the subterranean formation.
    Type: Grant
    Filed: April 12, 2021
    Date of Patent: November 29, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventors: James B. Thomas, Owen J. Hehmeyer, Nancy H. Choi, Erik N. English, Eric R. Grueschow
  • Patent number: 11506807
    Abstract: Geologic modeling methods and systems disclosed herein employ an improved simulation meshing technique. One or more illustrative geologic modeling methods may comprise: obtaining a geologic model representing a faulted subsurface region in physical space; providing a set of background cells that encompass one or more partial faults within the subsurface region; defining a pseudo-extension from each unterminated edge of said one or more partial faults to a boundary of a corresponding background cell in said set; using the pseudo-extensions and the background cell boundaries to partition the subsurface region into sub-regions; deriving a simulation mesh in each sub-region based on the horizons in each sub-region; and outputting the simulation mesh.
    Type: Grant
    Filed: April 19, 2019
    Date of Patent: November 22, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventor: Hao Huang
  • Patent number: 11506042
    Abstract: An oil-water fractionation system is positioned within a wellbore on a subsurface end of a production tubing proximate to a production region. The fractionation system includes a permeable hydrophobic media for preferentially conveying an oil-enriched stream (reduced water-cut presence) from the production region into the production tubing, and a permeable oleophobic media for preferentially conveying a water-enriched stream (reduced oil-cut presence) into a second flow path. The permeable hydrophobic media and the permeable oleophobic media are in simultaneous hydraulic communication with the production region. The permeable hydrophobic media is manufactured with a relatively high effective permeability to oil, allowing the oil-enriched stream to flow through the permeable hydrophobic media into the production tubing.
    Type: Grant
    Filed: October 22, 2020
    Date of Patent: November 22, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Mauro Lo Cascio, Andrey A. Troshko, Michael T. Hecker, Matthew S. Jackson, Dragan Stojkovic
  • Patent number: 11492540
    Abstract: Solvent mixtures for downhole elemental sulfur removal and formation stimulation, and methods for utilizing such solvent mixtures, are described herein. One method includes providing a solvent mixture that includes an elemental sulfur solvent fraction and an odorant fraction that includes a lactate ester solvent. The method also includes injecting the solvent mixture into a hydrocarbon well such that the elemental sulfur solvent fraction of the solvent mixture dissolves elemental sulfur deposited on well components, and contacting the solvent mixture with water such that the lactate ester solvent within the odorant fraction reacts with the water to generate lactic acid. The method further includes stimulating a formation through which the hydrocarbon well extends by flowing the solvent mixture including the lactic acid through the hydrocarbon well and into the formation.
    Type: Grant
    Filed: April 13, 2021
    Date of Patent: November 8, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Kevin A. Harnsberry, Paul Scott Northrop
  • Patent number: 11480698
    Abstract: A method and apparatus for generating a fluid saturation model for a subsurface region. One example method generally includes obtaining a model of the subsurface region; for each of a plurality of fluid types: flooding the subsurface region model with the fluid type to generate a flood model; and running a trial petrophysical inversion with the flood model to generate a trial petrophysical model; identifying potential fluid contact regions in the trial petrophysical models; partitioning the subsurface region model at the identified potential fluid contact regions; and constructing the fluid saturation model from the partitioned subsurface region model.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: October 25, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventors: David D. McAdow, Jan Schmedes, Ratnanabha Sain
  • Patent number: 11474266
    Abstract: A method and system are described for creating subsurface models that involve the use of isomorphic reversible scanning curve for simulating hysteresis in reservoir simulators. The method includes constructing a subsurface model for a subsurface region and using the subsurface model in simulations and in hydrocarbon operations, such as hydrocarbon exploration, hydrocarbon development, and/or hydrocarbon production.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: October 18, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Jizhou Li, Jonathan D. Pietarila Graham
  • Patent number: 11466538
    Abstract: A chemically-activated inflow control device. The inflow control device comprises a tubular body configured to be connected in series to joints of sand screen in a wellbore. The tubular body forms a bore that receives a slotted base pipe. At the same time, the tubular body is fluidly connected with the sand screen joints, forming an annular flow path between the slotted base pipe and surrounding sand screen. Production fluids moving into the sand screen pass across a component that degrades in the presence of water. If the well begins producing water, the degradable component will dissolve, activating a sealing mechanism within the inflow control device and closing a restricted flow path. In this way, production fluids are not able to travel from the annular flow path into the bore of the slotted base pipe. A method for completing a wellbore having a chemically-activated inflow control device is also provided.
    Type: Grant
    Filed: October 9, 2019
    Date of Patent: October 11, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Andy J. Veselka, Matthew S. Jackson, Federico G. Gallo
  • Patent number: 11465093
    Abstract: A method and apparatus for separating a separation component from a gas stream. One exemplary method includes: flowing the gas stream across a process surface of a compliant composite heat transfer wall, wherein: the gas stream has an initial concentration of the separation component, and the gas stream has a gas temperature; flowing a cooling fluid across a cooling surface of the wall, wherein: the cooling fluid has a fluid temperature, and the fluid temperature is less than the gas temperature; and producing an output gas stream, wherein: the output gas stream has an output concentration of the separation component, and the output concentration is less than the initial concentration. Another exemplary method includes separating at least a portion of the separation component from the gas stream by: accumulating the portion proximate the process surface; and delaminating the portion from the process surface with a flow of the gas stream.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: October 11, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Robert D. Kaminsky, Marcel Staedter, Mohsen Shahmirzadi Yeganeh
  • Patent number: 11460462
    Abstract: A method of analyzing a rock sample includes analyzing one or more large-area, low-resolution micrographs to identify areas requiring higher-resolution imaging, and selecting one or more analysis regions from the areas requiring higher-resolution imaging. Multi-spectral imaging is used on the one or more analysis regions to obtain one or more high-resolution, multi-spectral images, and one or more features of the rock sample are identified from the corresponding one or more high-resolution, multi-spectral images. The method further includes upscaling the one or more high-resolution, multi-spectral images and thereby geo-locating the features of the rock sample to key regions of the rock sample.
    Type: Grant
    Filed: August 27, 2019
    Date of Patent: October 4, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Hubert E. King, Jr., Michael G. Myers, William A. Lamberti, Antonio S. Buono, James H. Macquaker
  • Patent number: 11459501
    Abstract: Chelating acid blends for stimulation of a subterranean formation, methods of utilizing the chelating acid blends, and hydrocarbon wells that include the chelating acid blends are disclosed herein. The chelating acid blends include an acid mixture and a chelating agent or set of chelating agents. The acid mixture includes hydrochloric acid and hydrofluoric acid. The methods include providing the chelating acid blends to a wellbore of a hydrocarbon well, flowing the chelating acid blends into a subterranean formation, dissolving a fraction of a formation mineralogy of the subterranean formation with the acid mixture, and chelating poly-valent metal ions with the chelating agent. The hydrocarbon wells include a wellbore that extends within a subterranean formation, a downhole tubular that extends within the wellbore, a fracture that extends into the subterranean formation, and a chelating acid blend positioned within the fracture.
    Type: Grant
    Filed: February 3, 2021
    Date of Patent: October 4, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Mauro Lo Cascio, Pavlin B. Entchev, Timothy J. Hall, P. Matthew Spiecker
  • Patent number: 11433346
    Abstract: Disclosed are processes and systems for the removal of water from a feed stream utilizing swing adsorption processes including an adsorbent bed comprising an adsorbent material which is a cationic zeolite RHO. The cationic zeolite RHO comprises at least one, preferably two, metal cations selected from Group 1 and 2 elements (new Group 1-18 IUPAC numbering). The swing adsorption processes and systems utilizing the cationic zeolite RHO have an adsorption selectivity for water and are useful in selective dehydration of commercial feed streams. The cationic zeolite RHO additionally has an exceptionally high water adsorption stability for use in feed streams with wet acid gas environments operating under cyclic swing adsorption conditions.
    Type: Grant
    Filed: October 14, 2020
    Date of Patent: September 6, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Yu Wang, Barbara Carstensen, Daniel P. Leta, Peter I. Ravikovitch, Harry W. Deckman, Scott J. Weigel
  • Patent number: 11435498
    Abstract: A method and apparatus for modeling a subsurface region, including: obtaining a training set of geologically plausible models for the subsurface region; training an autoencoder with the training set; extracting a decoder from the trained autoencoder, wherein the decoder comprises a geologic-model-generating function; using the decoder within a data-fitting objective function to replace output-space variables of the decoder with latent-space variables, wherein a dimensionality of the output-space variables is greater than a dimensionality of the latent-space variables; and performing an inversion by identifying one or more minima of the data-fitting objective function to generate a set of prospective latent-space models for the subsurface region; and using the decoder to convert each of the prospective latent-space models to a respective output-space model. A method and apparatus for making one or more hydrocarbon management decisions based on the estimated uncertainty.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: September 6, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Brent D. Wheelock, Huseyin Denli
  • Patent number: 11434406
    Abstract: A method of designing compressible particles for a fluid mixture. The compressible particles are intended to be used for attenuating pressure within a confined volume such as a trapped annulus. Preferably, the compressible particles reside buoyantly within an aqueous fluid, forming a fluid mixture. Each of the compressible particles is fabricated to collapse in response to fluid pressure within the confined volume, and comprises carbon. The particles may each have a porosity of between 5% and 40%, and a compressibility of between 10% and 30%, at 10,000 psi. The particles are tuned to have a buoyancy that is lower than the carrier fluid while still having resiliency.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: September 6, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Ward E. Narhi, Sandeep A. Kibey, David A. Stiles, Michael R. Awe, Adam W. Aylor
  • Patent number: 11434757
    Abstract: Various embodiments described herein provide methods of hydrocarbon management and associated systems and/or computer readable media including executable instructions. Such methods (and by extension their associated systems and/or computer readable media for implementing such methods) may include obtaining geophysical data (e.g., seismic or other geophysical data) from a prospective subsurface formation (that is, a potential formation or other subsurface region of interest for any of various reasons, but in particular due to potential for production of hydrocarbons) and using a trained machine learning (ML) system for direct hydrocarbon indicators (DHI) analysis of the obtained geophysical data. Hydrocarbon management decisions may be guided by the DHI analysis.
    Type: Grant
    Filed: January 29, 2020
    Date of Patent: September 6, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Kurt J. Steffen, Cody J. MacDonald, Jie Zhang
  • Patent number: 11428079
    Abstract: A method and systems for sand control in wells are described in examples. An example uses a prepack screen assembly comprising an inner screen comprising openings having an inner size and an outer screen comprising openings having an outer size. Packing material is disposed between the inner screen and the outer screen comprising pores with a pore size that is selected based, at least in part, on the outer size, the inner size, or both.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: August 30, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Charles S. Yeh, Timothy K. Ellison, Tracy J. Moffett, Michael D. Barry, Andy J. Veselka, Elizabeth L. Templeton-Barrett
  • Patent number: 11414974
    Abstract: Hydrocarbon wells including crosslinked polymer granules as a proppant, methods of forming the hydrocarbon wells, and methods of operating the hydrocarbon wells. The hydrocarbon wells include a wellbore that extends within a subsurface region and a downhole tubular that extends within the wellbore and defines a tubular conduit. The hydrocarbon wells also include a plurality of perforations formed within the downhole tubular and a plurality of fractures formed within the subsurface region. The hydrocarbon wells further include the proppant positioned within the plurality of fractures. The proppant includes a plurality of crosslinked polymer granules, and each crosslinked polymer granule has a characteristic dimension of at least 100 micrometers and at most 2 millimeters.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: August 16, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Pavlin B. Entchev, Robert M. Shirley, Alan A. Galuska, William Handy, Dragan Stojkovic