Patents Assigned to ExxonMobil Upstream Research Company
  • Patent number: 11360018
    Abstract: No reliable test presently exists for predicting the amount or type of corrosion a metal surface may experience during field use, particularly when the corrosion can be a result of both acid-induced corrosion and microorganism-induced corrosion mechanisms. Apparatuses affording more field-like testing conditions may comprise: a one-pass fluid train comprising a reservoir configured to maintain a fluid at a first temperature state under anoxic conditions; a pre-conditioning chamber in fluid communication with the reservoir and configured to receive a defined volume of the fluid; an autoclave chamber having an impeller in fluid communication with the pre-conditioning chamber that is configured to receive the defined volume of the fluid from the pre-conditioning chamber; and one or more sampling receptacles in fluid communication with the autoclave chamber that are configured to receive the defined volume of the fluid while maintaining anoxic conditions.
    Type: Grant
    Filed: November 11, 2019
    Date of Patent: June 14, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Dennis R. Enning, Ramsey J. Smith, Jeffrey D Spitzenberger, Alexander J. Dulin, Oleg Y. Melnichenko, James K. Backman, William Farrell, Kurt R. Grice, Michael Scudiero
  • Patent number: 11345842
    Abstract: Hydrocarbon wells including crosslinked polymer granules as lost circulation material and methods of drilling the hydrocarbon wells. The hydrocarbon wells include a wellbore that extends within a subsurface region, a drilling rig, a drilling mud supply system, a lost circulation detection structure, and a lost circulation material supply system that includes a lost circulation material. The lost circulation material includes a plurality of crosslinked polymer granules, and a characteristic dimension of each crosslinked polymer granule is at least 20 micrometers and at most 1 millimeter. Each crosslinked polymer granule contains a highly crosslinked polymeric material that includes a plurality of polyethylene polymer chains. The methods include rotating a drill string to extend a length of a wellbore and, during the rotating, flowing a drilling mud stream. The methods also include detecting a lost circulation event and, responsive to the detecting, providing a lost circulation material to the wellbore.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: May 31, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Robert M. Shirley, Pavlin B. Entchev, Alan A. Galuska, William Handy
  • Patent number: 11346181
    Abstract: Techniques described herein relate to a well completion including an engineered production liner extending into a reservoir. The engineered production liner includes limited-entry liner (LEL) valves configured to open to allow an acid solution to jet into the reservoir during an acid stimulation process, and close to prevent production fluid from flowing through the LEL valves when the well completion is put into production. The engineered production liner also includes pre-packed chemically-infused material (CIM) cartridges including production chemicals, and openings that align with the pre-packed CIM cartridges. The openings are plugged during the acid stimulation process to force the acid solution to flow through the LEL valves. The pre-packed CIM cartridges and the openings are configured to allow the production fluid to absorb a portion of the production chemicals as it flows from the reservoir into the engineered production liner when the well completion is put into production.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: May 31, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventor: Timothy I. Morrow
  • Patent number: 11340366
    Abstract: Iterative methods for inversion of seismic data to update a physical property model are disclosed. Such methods may comprise iteratively updating the model until a first predetermined resolution is achieved, using full wavefield inversion of the seismic data up to a first frequency threshold and assuming the seismic data is free of attenuation effects; extracting geobodies from the updated model; obtaining a Q model using the geobodies; and updating the physical property model using an inversion process, wherein the Q model is incorporated into the inversion process. These steps may be repeated until a second predetermined resolution of the physical property model is achieved, wherein the first frequency threshold is progressively increased in each repetition. The Q model may be updated with seismic data at all available frequencies to obtain a full-band Q model; and the physical property model may be updated using full-band migration and the full-band Q model.
    Type: Grant
    Filed: September 16, 2019
    Date of Patent: May 24, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Anatoly I. Baumstein, Gboyega Ayeni, Carey M. Marcinkovich, Jaewoo Park, Sirui Tan, Peter Traynin
  • Patent number: 11331620
    Abstract: Provided are apparatus and systems for performing a swing adsorption process. This swing adsorption process may involve performing dampening for fluctuations in the streams conducted away from the adsorbent bed unit. The process may be utilized for swing adsorption processes, such as rapid cycle TSA and/or rapid cycle PSA, which are utilized to remove one or more contaminants from a gaseous feed stream.
    Type: Grant
    Filed: January 21, 2019
    Date of Patent: May 17, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Ananda Krishna Nagavarapu, Bennett D. Marshall, Brett L. Ryberg, Stephen Wright
  • Patent number: 11332652
    Abstract: A collection of compressible particles. The compressible particles are intended to be used for attenuating pressure within a confined volume such as a trapped annulus. Preferably, the compressible particles buoyantly reside within an aqueous fluid, forming a fluid mixture. Each of the compressible particles is fabricated to collapse in response to fluid pressure within the confined volume, and comprises carbon. The particles may each have a porosity of between 5% and 40%, and a compressibility of between 10% and 30%, at up to 10,000 psi. Each of the particles has a resiliency of between 80% and 120%.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: May 17, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Sandeep A. Kibey, Joshua Blunt, Ward E. Narhi
  • Patent number: 11326440
    Abstract: An instrumented coupling for pipe joints is described herein. The instrumented coupling includes a first threaded end configured to thread to a first pipe joint and a second threaded end configured to thread to a second pipe joint. The instrumented coupling also includes a sensor configured to obtain a measurement of a parameter of a well and a communications device configured to communicate to a receiving device outside of the well. The instrumented coupling further includes a processor configured to execute instructions in a data store. The instructions direct the processor to read the measurement from the sensor, compare the measurement from the sensor to a preset limit, and generate a signal within the communications device based, at least in part, on the measurement.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: May 10, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Benjamin J. Spivey, Kevin H. Searles, Eric R. Grueschow
  • Patent number: 11326444
    Abstract: Hydrocarbon wells and associated methods that utilize radio frequency identification (RFID) tags and flowable interrogators to interrogate the hydrocarbon wells are provided. The hydrocarbon wells include a wellbore, a downhole tubular that defines a tubular conduit and extends within the wellbore, and a plurality of RFID tags. The hydrocarbon wells also include a downhole interrogator storage structure that includes a plurality of flowable interrogators and a well-side communication device. Methods of operating the hydrocarbon wells are also provided.
    Type: Grant
    Filed: October 6, 2020
    Date of Patent: May 10, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Michael C. Romer, Rami Jabari, P. Matthew Spiecker
  • Patent number: 11326834
    Abstract: A method of operating, during an at least partial shutdown of a refrigerant distribution subsystem in a natural gas liquefaction facility, can include: draining down at least a portion of a mixed refrigerant in one or more components of the refrigerant distribution subsystem into a high-pressure holding tank of a drain down subsystem, wherein draining down to the high-pressure holding tank is achieved by pumping the mixed refrigerant from the refrigerant distribution subsystem to the high-pressure holding tank or backfilling the refrigerant distribution subsystem with a backfill gas; and optionally, transferring at least a portion of the mixed refrigerant into a low-pressure drum from the high-pressure holding tank.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: May 10, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Brett L. Ryberg, Stephen Wright, Kenichi Tadano, Naoki Watanabe
  • Patent number: 11326426
    Abstract: Hydrocarbon wells including gas lift valves and methods of providing gas lift in a hydrocarbon well. The hydrocarbon wells include a wellbore extending within a subsurface region and a downhole tubular extending within the wellbore. The downhole tubular defines a tubular conduit, and the wellbore and the downhole tubular define an annular space therebetween. The hydrocarbon wells also include a lift gas supply system configured to provide a lift gas stream to the annular space and a closure material supply system configured to provide a closure material stream to the annular space. The hydrocarbon wells further includes a gas lift valve operatively attached to the downhole tubular. The gas lift valve includes a lift gas injection conduit and an actuation mechanism. The actuation mechanism selectively transitions to a closed state responsive to contact with the closure material. The methods include methods of operating the hydrocarbon wells.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: May 10, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventors: David A. Howell, Rosmer Maria Brito Jurado, Federico G. Gallo, Michael C. Romer
  • Patent number: 11320551
    Abstract: A method and apparatus for seismic interpretation including machine learning (ML). A method of training a ML system for seismic interpretation includes: preparing a collection of seismic images as training data; training an interpreter ML model to learn to interpret the training data, wherein: the interpreter ML model comprises a geologic objective function, and the learning is regularized by one or more geologic priors; and training a discriminator ML model to learn the one or more geologic priors from the training data. A method of hydrocarbon management includes: training the ML system for seismic interpretation; obtaining test data comprising a second collection of seismic images; applying the trained ML system to the test data to generate output; and managing hydrocarbons based on the output. A method includes performing an inference on test data with the interpreter and discriminator ML models to generate a feature probability map representative of subsurface features.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: May 3, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Kuang-Hung Liu, Wei D. Liu, Huseyin Denli, Cody J. MacDonald
  • Patent number: 11320552
    Abstract: Methods are disclosed for monitoring operation integrity during hydrocarbon production or fluid injection operations. According to the methods, received microseismic data is processed to obtain a plurality of data panels corresponding to microseismic data measured over a predetermined time interval. For each data panel, trigger values are calculated for data traces corresponding to sensor receivers of the microseismic monitoring system. At least one data panel is selected as a triggered data panel that satisfies predetermined triggering criteria. A value is calculated for each of at least two event attributes of a plurality of event attributes of the event. An event is classified into at least one event category of a plurality of event categories based on the event score. Related non-transitory computer usable mediums are also disclosed.
    Type: Grant
    Filed: June 20, 2019
    Date of Patent: May 3, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Sri Venkata Tapovan Lolla, Jeffrey R. Bailey, Simona O. Costin, Michael S. Hons, Helen Yam, Arslan Akhmetov, Tim W. Hayward, Richard J. Smith, Colum M. Keith, Marc-Andre P. Chen, Xinlong Liu
  • Patent number: 11318410
    Abstract: Methods, systems, and apparatus are provided for modulating fluid flow in a cyclical swing adsorption system that includes multiple adsorption bed vessels that are in fluid communication. When opening a valve to transition an adsorption bed vessel into a blowdown stage or a re-pressurization stage of a cyclical swing adsorption process, the valve is partially lifted from a closed position prior to being fully lifted. The valve includes a flow restriction aid positioned to restrict flow through the valve when the valve is in the partially lifted position.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: May 3, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventors: John W. Fulton, William N. Yunker, Tracy A. Fowler
  • Patent number: 11319417
    Abstract: Methods of manufacturing highly crosslinked polymer particulate. The methods include positioning a granular polymeric material within a crosslinking apparatus and crosslinking the granular polymeric material with the crosslinking apparatus to form a highly crosslinked polymeric material. The methods also include forming a plurality of crosslinked polymer granules from the highly crosslinked polymeric material.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: May 3, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Alan A. Galuska, Pavlin B. Entchev, William Handy, Robert M. Shirley
  • Patent number: 11318413
    Abstract: The present disclosure describes the use of a specific adsorbent material in a rapid cycle swing adsorption to perform dehydration of a gaseous feed stream. The adsorbent material includes a zeolite 3A that is utilized in the dehydration process to enhance recovery of hydrocarbons.
    Type: Grant
    Filed: February 17, 2020
    Date of Patent: May 3, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Yu Wang, Harry W. Deckman, Ashley M. Wittrig, Karl G. Strohmaier, Daniel P. Leta, Peter I. Ravikovitch
  • Patent number: 11313215
    Abstract: Provided are methods and systems for monitoring and modifying stimulation operations in a reservoir. In particular, the methods and systems utilize a downhole telemetry system, such as a network of sensors and downhole wireless communication nodes, to monitor various stimulation operations.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: April 26, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Xiaohua Yi, Mark M. Disko, Limin Song, David A. Howell
  • Patent number: 11306267
    Abstract: A method of separating a feed stream in a distillation tower. Vapor is permitted to rise upwardly from a distillation section of the distillation tower. A feed stream is introduced into a controlled freeze zone section of the distillation tower, the controlled freeze zone section being situated above the distillation section. The feed stream is released above a level of a liquid retained by a melt tray assembly in the controlled freeze zone section. Vapor from the distillation section is directed into the liquid retained by the melt tray assembly. A solid is formed from the feed stream in the controlled freeze zone section.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: April 19, 2022
    Assignee: EXXONMOBIL UPSTREAM RESEARCH COMPANY
    Inventors: Jaime A. Valencia, Charles J. Mart, Ransdall K. Smith, David W. Maher
  • Patent number: 11294087
    Abstract: A method for directional Q compensation of seismic data may comprise calculating angle-dependent subsurface travel times; applying directional Q compensation to the prestack seismic data to obtain Q-compensated data in time-space domain, wherein the directional Q compensation is based on the angle-dependent subsurface travel times; and using the Q-compensated data to generate an image of the subsurface. Directional Q compensation may comprise determining an angle-dependent forward E operator and an angle-dependent adjoint E* operator using the angle-dependent subsurface travel times; and applying a sparse inversion algorithm using the angle-dependent operators to obtain a model of Q-compensated data.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: April 5, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Mehdi Aharchaou, Erik R. Neumann
  • Patent number: 11293280
    Abstract: A method and system are described for monitoring post-stimulation operations using a plurality of communication nodes disposed along tubular members in a wellbore. The method includes constructing a communication network and installing the communication nodes along the tubular members. The communication nodes are used to monitor for the presence and/or quantity of solids and/or fluids associated with post-stimulation operations in the tubular members by analyzing how the contents of the tubular members acoustically affect the signals transmitted between the communication nodes. Hydrocarbon operations may be modified based on the analysis.
    Type: Grant
    Filed: November 11, 2019
    Date of Patent: April 5, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Xiaohua Yi, David A. Howell
  • Patent number: 11293847
    Abstract: Test systems and methods for evaluating erosion of a test sample. The test systems include a particulate distribution structure configured to receive a supplied particulate stream and to discharge a distributed particulate stream. The test systems also include a particulate acceleration structure configured to receive the distributed particulate stream and to generate an accelerated particulate stream. The test systems further include a test sample fixture configured to hold the test sample at a test sample location positioned such that the accelerated particulate stream is incident upon the test sample location. The methods include methods of operating the test systems.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: April 5, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Matthew S. Jackson, Federico G. Gallo, Christian S. Mayer, Dragan Stojkovic, David Milton-Tayler, James Goddings