Abstract: An articulated arm coordinate measurement machine is provided with a power supply having multiple power sources. The power supply having an input configured to receive electrical power from an external energy supply and first and second energy storage members. The first energy storage member having a first processing circuit configured to measure at least one first parameter and transmit a first signal to the first electronic circuit. The second energy storage member having a second processing circuit configured to measure at least one second parameter and transmit a second signal to the first electronic circuit. Wherein the power supply is configure to selectively transfer electrical power from at least one of the first and second energy storage members, the power supply further being configured to change the transfer of electrical power from the first and second energy storage members in response to the first signal and second signal.
Abstract: A coordinate measuring device includes: a light source operable to emit a first light, the first light being visible light having a first wavelength; a fiber launch operable to receive the first light through a first optical fiber, to launch the first light into free space, and to collimate the launched first light into a first beam of light having a diameter_defined by the fiber launch, the first beam of light operable to leave the coordinate measuring device absent an intervening beam expander, the fiber launch being further coupled through the first optical fiber to a distance meter operable to measure a first distance to a retroreflector illuminated by the first beam of light; a first motor and a second motor operable to direct the first beam of light to a first direction, the first direction determined by a first angle of rotation about a first axis and a second angle of rotation about a second axis, the first angle of rotation produced by the first motor and the second angle of rotation produced by the
Abstract: A measurement device having a camera captures images of an object at three or more different poses. A processor determines 3D coordinates of an edge point of the object based at least in part on the captured 2D images and pose data provided by the measurement device.
Abstract: A method and system of generating a two-dimensional map with an optical scanner is provided. The method comprises acquiring coordinate data of points in an area being scanned with a mobile optical scanner. A current 2D map from the coordinate data is generated. A copy of the current 2D map is saved on a periodic or aperiodic basis. At least one data registration error is identified in the current 2D map. The saved copy of the current 2D map from a point in time prior to the registration error is determined. A second data set of coordinate data acquired after the determined saved copy is identified. The second data set is aligned to the determined saved copy to form a new current 2D map. The new current 2D map is stored in memory.
Type:
Grant
Filed:
October 10, 2017
Date of Patent:
May 7, 2019
Assignee:
FARO TECHNOLOGIES, INC.
Inventors:
Oliver Zweigle, Aleksej Frank, Bernd-Dietmar Becker
Abstract: A noncontact optical three-dimensional measuring device that includes a first projector, a first camera, and a second camera; a processor electrically coupled to the first projector, the first camera and the second camera; and computer readable media which, when executed by the processor, causes the first digital signal to be collected at a first time and the second digital signal to be collected at a second time different than the first time and determines three-dimensional coordinates of a first point on the surface based at least in part on the first signal and the first distance and determines three-dimensional coordinates of a second point on the surface based at least in part on the second signal.
Abstract: An articulated arm coordinate measurement machine is provided with a configurable arm bus. The arm bus being comprised of a plurality of busses that may be selectively coupled to form one or more logical data communications busses. The logical busses may be configured to allow accessory devices to be coupled to the arm and transmit data at higher speeds and at lower costs than may be possible using data busses having fixed communications protocols. In one embodiment, one or more communications switches may be arranged in the probe end of the arm to selectively combine the busses into a logical bus.
Abstract: A method and system of combining 2D images into a 3D image. The method includes providing a coordinate measurement device and a triangulation scanner having an integral camera associated therewith, the scanner being separate from the coordinate measurement device. In a first instance, the coordinate measurement device determines the position and orientation of the scanner and the integral camera captures a first 2D image. In a second instance, the scanner is moved, the coordinate measurement device determines the position and orientation of the scanner, and the integral camera captures a second 2D image. A common feature point in the first and second images is found and is used, together with the first and second images and the positions and orientations of the scanner in the first and second instances, to create the 3D image.
Abstract: A three-dimensional (3D) coordinate measuring system is provided. The system includes an aerial measuring device that has an aerial drone and a 3D measurement device. The 3D measurement device being rotatably attached to the aerial drone, the aerial drone is movable from a first position to a stationary second position. The 3D measurement device being configured to optically measure points on the surface of an object. The system further includes one or more processors configured to execute nontransitory computer readable instructions. The computer readable instructions comprise: moving the aerial measuring device from the first position; landing the aerial measuring device at the second position; rotating the 3D measurement device to optically measure a first object point; and determining a first 3D coordinates of the first object point with the 3D measuring device.
Type:
Grant
Filed:
May 29, 2018
Date of Patent:
March 19, 2019
Assignee:
FARO TECHNOLOGIES, INC.
Inventors:
Rolf Heidemann, Denis Wohlfeld, Robert E. Bridges, Helmut Kramer
Abstract: An optical encoder for measuring rotation is provided. The optical encoder includes an optical disk having a diffraction grating track and an index track. The index track being disposed radially inward from the diffraction grating track. The diffraction grating track having a plurality of equally spaced lines that create an alternating light/dark pattern. The index track includes a pattern with at least two sequences, the at least two sequences being equally spaced about the diameter of the index track, each of the sequences having at least one mark and each of the sequences having a different number of marks from the other sequences.
Abstract: A three-dimensional (3D) coordinate measurement system includes: a retroreflector; a laser tracker including: a first light source; a second light source; at least one camera proximate the second light source; and a processor responsive to executable instructions which when executed by the processor is operable to determine, in a first instance, that a follow-operator gesture has been given by an operator and in response turn the laser tracker to follow movement of the operator.
Type:
Grant
Filed:
December 28, 2017
Date of Patent:
February 19, 2019
Assignee:
FARO TECHNOLOGIES, INC.
Inventors:
Kalyan Nagalla, Robert C. Mehler, Robert E. Bridges
Abstract: A method for measuring and registering 3D coordinates has a 3D scanner measure a first collection of 3D coordinates of points from a first registration position. A 2D scanner collects horizontal 2D scan sets as 3D measuring device moves from first to second registration positions. A processor determines first and second translation values and a first rotation value based on collected 2D scan sets. 3D scanner measures a second collection of 3D coordinates of points from second registration position. Processor adjusts second collection of points relative to first collection of points based at least in part on first and second translation values and first rotation value. Processor identifies a correspondence among registration targets in first and second collection of 3D coordinates, and uses this correspondence to further adjust the relative position and orientation of first and second collection of 3D coordinates.
Type:
Grant
Filed:
August 21, 2017
Date of Patent:
February 12, 2019
Assignee:
FARO TECHNOLOGIES, INC.
Inventors:
Oliver Zweigle, Bernd-Dietmar Becker, Reinhard Becker
Abstract: A mobile three-dimensional (3D) measuring system includes a 3D measuring device, a multi-legged stand coupled to the 3D measuring device, and a motorized dolly detachably coupled to the multi-legged stand.
Type:
Grant
Filed:
March 30, 2016
Date of Patent:
January 8, 2019
Assignee:
FARO TECHNOLOGIES, INC.
Inventors:
Oliver Zweigle, Bernd-Dietmar Becker, Hamidreza Rajaie, Robert E. Bridges
Abstract: A method uses a two-dimensional (2D) camera in two different positions to provide first and second 2D images having three common cardinal points. It further uses a three-dimensional (3D) measuring device to measure two 3D coordinates. The first and second 2D images and the two 3D coordinates are combined to obtain a scaled 3D image.
Abstract: A 3D measurement device for optically scanning and measuring an environment is provided. The device includes a measuring head having a light emitter which emits an emission light beam, a light receiver and a control and evaluation device. The light receiver receives a reception light beam that is reflected or otherwise scattered by an object in the environment of the 3D measurement device. The control and evaluation device determines at least the distance from the object for each of a plurality of measuring points. A battery pack is removably coupled to the measuring head. The battery pack includes a battery housing and a plurality of individual batteries that are circular in cross-section. The plurality of individual batteries are arranged in a plurality of rows that define a row direction. The plurality of rows include a first row offset from a second row by one-half a diameter of the individual batteries.
Abstract: A portable articulated arm coordinate measurement machine (AACMM) is provided. The AACMM having a manually positionable articulated arm having first and second ends, the arm including a plurality of connected arm segments, each of the arm segments including at least one position transducer for producing position signals, at least one of the position signals passing between two of the arm segments through a first slip ring assembly. A first a first electronic circuit is provided that receives the position signals. A base section is connected to the second end. A probe assembly includes a probe end and a cover. The cover rotates about an axis extending through the probe assembly, the cover having at least one indentation formed thereon. The probe assembly is connected to the first end. The AACMM measures a three-dimensional coordinate of a point in space associated with the probe end.
Abstract: A method and system for acquiring three-dimensional (3D) coordinates of a surface is provided. The method includes providing the scanner configured to emit a light from the light source and reflect the light onto the surface, the scanner further being configured to determine with a processor a three-dimensional coordinate of a point on the surface based at least in part on a first and second angle measuring device and a reflection of the light from the surface. An image is acquired of the surface with a camera and a feature is identified. A first area is identified having a high information content and a first arc segment is determined. The surface is scanned by rotating a motor at a first speed during the first arc segment and at a second speed during a second arc segment, the second speed being greater than the first speed.
Abstract: A dimensional measuring device includes an overview camera and a triangulation scanner. A six-DOF tracking device tracks the dimensional measuring device as the triangulation scanner measures three-dimensional (3D) coordinates on an exterior of the object. Cardinal points identified by the overview camera are used to register in a common frame of reference 3D coordinates measured by the triangulation scanner on the interior and exterior of the object.
Type:
Grant
Filed:
January 26, 2018
Date of Patent:
November 13, 2018
Assignee:
FARO TECHNOLOGIES, INC.
Inventors:
Bernd-Dietmar Becker, Robert E. Bridges, Ariane Stiebeiner, Rolf Heidemann, Matthias Wolke
Abstract: A system includes a measurement device configured to measure a distance, a first angle, and a second angle to a retroreflector target. The system further includes a probe having the retroreflector target, an inclinometer sensor, a camera, and a processor, the inclinometer sensor configured to determine a two-dimensional inclination of the probe relative to a gravity vector, the camera configured to capture an image of a light emitted from or reflected by the measurement device, the processor configured to determine six degrees of freedom of the probe based at least in part on the distance, the first angle, the second angle, the two-dimensional inclination, and the captured image of the camera.
Type:
Grant
Filed:
December 29, 2015
Date of Patent:
November 13, 2018
Assignee:
FARO TECHNOLOGIES, INC.
Inventors:
Bernd-Dietmar Becker, Rolf Heidemann, Oliver Zweigle, Matthias Wolke
Abstract: A noncontact optical three-dimensional measuring device that includes a first projector, a first camera, a second projector, and a second camera; a processor electrically coupled to the first projector, the first camera, the second projector, and the second camera; and computer readable media which, when executed by the processor, causes the first digital signal to be collected at a first time and the second digital signal to be collected at a second time different than the first time and determines three-dimensional coordinates of a first point on the surface based at least in part on the first digital signal and the first distance and determines three-dimensional coordinates of a second point on the surface based at least in part on the second digital signal and the second distance.
Type:
Grant
Filed:
September 13, 2016
Date of Patent:
November 6, 2018
Assignee:
FARO TECHNOLOGIES, INC.
Inventors:
Bernd-Dietmar Becker, Robert E. Bridges
Inventors:
Nurettin Ali, Brent Bailey, Matthew G. Ackerman, Michael Bartel, Orlando Perez, John Lucas Creachbaum, James P. Phipps, Dragos M. Stanescu, Paul Atwell, Yazid Tohme, Kishore Lankalapalli