Abstract: A method and system for generating a three-dimensional (3D) map of an environment is provided. An example method includes receiving, by a processor system, via a 3D scanner, located at a scan position, a 3D scan of the environment. The method further includes receiving via a two-dimensional (2D) scanner accessory, a portion of a 2d map of the environment. The method further includes receiving coordinates of the scan position in the 2d map in response to the 3D scanner initiating the acquisition of the 3D scan. The method further includes associating the coordinates of the scan position with the portion of the 2D map. The method further includes determining a displacement vector for the 2D map using a loop closure algorithm. The method further includes computing a revised scan position based on the scan position and the displacement vector, where the 3D scan is registered using the revised scan position.
Abstract: A method of balancing colors of three-dimensional (3D) points measured by a scanner from a first location and a second location. The scanner measures 3D coordinates and colors of first object points from a first location and second object points from a second location. The scene is divided into local neighborhoods, each containing at least a first object point and a second object point. An adapted second color is determined for each second object point based at least in part on the colors of first object points in the local neighborhood.
Abstract: A system measuring an object with a robot is provided. The robot including a movable end effector, the robot including a plurality of transducers arranged to transmit signals to an electronic circuit, the electronic circuit configured in operation to determine the position and orientation of the end effector. At least one tool is provided that is removably coupled to the end effector. A three-dimensional (3D) scanner is provided that is configured in operation to determine three-dimensional coordinates of a surface of an object, the 3D scanner being removably coupled to the end effector. A controller is configured to selectively couple one of the at least one tool or the 3D scanner to the end effector in response to an object signal.
Abstract: A method interactively displays panoramic images of a scene. The method includes measuring 3D coordinates of the scene with a 3D measuring instrument at a first position and a second position. The 3D coordinates are registering into a common frame of reference. Within the scene, a trajectory includes a plurality of trajectory points. Along the trajectory, 2D images are generated from the commonly registered 3D coordinates. A trajectory display mode sequentially displays a collection of 2D images at the trajectory points. A rotational display mode allows a user to select a desired view direction at a given trajectory point. The user selects the trajectory display mode or the rotational display mode and sees the result shown on the display device.
Abstract: A method of combining 2D images into a 3D image includes providing a coordinate measurement device and a six-DOF probe having an integral camera associated therewith, the six-DOF probe being separate from the coordinate measurement device. In a first instance, the coordinate measurement device determines the position and orientation of the six-DOF probe and the integral camera captures a first 2D image. In a second instance, the six-DOF probe is moved, the coordinate measurement device determines the position and orientation of the six-DOF probe, and the integral camera captures a second 2D image. A cardinal point common to the first and second image is found and is used, together with the first and second images and the positions and orientations of the six-DOF probe in the first and second instances, to create the 3D image.
Abstract: A system and method of determining 3D coordinates of an object is provided. The method includes determining a first set of 3D coordinates for a plurality of points on the object with a structured light scanner. An inspection plan is determined for the object, which includes features to be inspected with a remote probe. The points are mapped onto a CAD model. The features are identified on the plurality of points mapped onto a CAD model. A visible light is projected with the scanner proximate a first feature of the features. A sensor is contacted on the remote probe to at least one first point on the first feature on the object. A first position and orientation of the remote probe are determined with the scanner. A second set of 3D coordinates of the at least one first point are determined on the first feature on the object.
Abstract: A method for scanning and obtaining three-dimensional (3D) coordinates is provided. The method includes providing a 3D measuring device having a projector, a first camera and a second camera. The method records images of a light pattern emitted by the projector onto an object. A deviation in a measured parameter from an expected parameter is determined. The calibration of the 3D measuring device may be changed when the deviation is outside of a predetermined threshold.
Type:
Grant
Filed:
January 11, 2018
Date of Patent:
October 2, 2018
Assignee:
FARO TECHNOLOGIES, INC.
Inventors:
Gerrit Hillebrand, Rolf Heidemann, Martin Ossig
Abstract: A system that measures six degrees-of-freedom of a remote target, the system including a dimensional measuring device having a camera, the remote target including a retroreflector, at least three light markers, and a pitch-yaw sensor, the six degrees-of-freedom determined based at least in part on measured 3D coordinates of the retroreflector by the dimensional measuring device, on a captured image of the at least three light markers by the camera, and on readings of the pitch-yaw sensor.
Type:
Grant
Filed:
December 29, 2016
Date of Patent:
September 25, 2018
Assignee:
FARO TECHNOLOGIES, INC.
Inventors:
Mikhail Atlas, Lawrence B. Brown, William W. Christine, Max K. Kim, Daniel J. O'Neill, James Schloss, Zhiguang Willam Xu, Robert E. Bridges
Abstract: A method for measuring and registering three-dimensional (3D) coordinates by measuring 3D coordinates with a 3D scanner in a first registration position, measuring two-dimensional (2D) coordinates with a 2D scanner while moving from the first registration position to a second registration position, measuring 3D coordinates with the 3D scanner at the second registration position, and determining a correspondence among targets in the first and second registration positions while moving between the second registration position and a third registration position.
Type:
Grant
Filed:
October 14, 2015
Date of Patent:
September 4, 2018
Assignee:
FARO TECHNOLOGIES, INC.
Inventors:
Oliver Zweigle, Bernd-Dietmar Becker, Reinhard Becker
Abstract: A method for scanning and measuring an environment is provided. The method includes providing a three-dimensional (3D) measurement device having a controller. Images of the environment are recorded and a 3D scan of the environment is produced with a three-dimensional point cloud. A video image of the environment is recorded. The video image is displayed on a first portion of a display. A portion of the three-dimensional point cloud is displayed on a second portion of the display, the second portion of the display being arranged about the periphery of the first portion of the display. Wherein a portion of the 3D point cloud displayed in the second portion represents a portion of the environment outside of a field of view of the video image.
Abstract: A portable articulated arm coordinate measuring machine includes a noncontact 3D measuring device that has a projector configured to emit a first pattern of light onto an object, a scanner camera arranged to receive the first pattern of light reflected from the surface of the object, an edge-detecting camera arranged to receive light reflected from an edge feature of the object, and a processor configured to determine first 3D coordinates of an edge point of the edge feature based on electrical signals received from the scanner camera and the edge-detecting camera.
Abstract: A 3D coordinate measuring system includes a six-DOF unit having a unit frame of reference and including a structure, a retroreflector, a triangulation scanner, and an augmented reality (AR) color camera. The retroreflector, scanner and AR camera are attached to the structure. The scanner includes a first camera configured to form a first image of the pattern of light projected onto the object by a projector. The first camera and projector configured to cooperate to determine first 3D coordinates of a point on the object in the unit frame of reference, the determination based at least in part on the projected pattern of light and the first image. The system also includes a coordinate measuring device having a device frame of reference and configured to measure a pose of the retroreflector in the device frame of reference, the measured pose including measurements of six degrees-of-freedom of the retroreflector.
Abstract: A method for optically scanning and measuring a scene by a laser scanner includes generating multiple scans; tracking scanner positions with a position-tracking device for the multiple scans and providing tracked scanner positions in response; registering sequentially scans selected from the multiple scans into clusters using registration points or targets and confirming registration of the scans into the clusters according to specified quality criteria being fulfilled; selecting scans from the clusters and forming pairs of scans; forming an intersection of the selected pairs and comparing a size of the intersection with a threshold value obtained based at least in part on the tracked scanner positions; and attempting to register the pairs of scans if the size of the intersection exceeds the threshold value and accepting the registered pairs of scans if the registration is successful.
Type:
Grant
Filed:
August 23, 2017
Date of Patent:
June 5, 2018
Assignee:
FARO TECHNOLOGIES, INC.
Inventors:
Sebastian Bartmann, Helmut Kramer, Daniel Pompe, Michael Schanz
Abstract: A three-dimensional (3D) coordinate measuring system includes an external projector that projects a pattern of light onto an object and an aerial drone attached to a 3D imaging device, the 3D imaging device and the external projector cooperating to obtain 3D coordinates of the object.
Type:
Grant
Filed:
August 29, 2016
Date of Patent:
June 5, 2018
Assignee:
FARO TECHNOLOGIES, INC.
Inventors:
Rolf Heidemann, Denis Wohlfeld, Robert E. Bridges, Helmut Kramer
Abstract: A method for measuring a distance includes modulating the light beam at a first frequency, receiving a second beam by the optical detector to produce a first electrical signal having the first frequency and a first phase; modulating the light beam at a second frequency different than the first frequency; receiving the second beam by the optical detector to produce a second electrical signal having the second frequency and a second. After these steps, the retroreflector is moved while modulating the light beam continuously at the second frequency; and a first distance to the retroreflector is determined based at least in part on a the first and second frequencies and phases.
Type:
Grant
Filed:
October 6, 2016
Date of Patent:
June 5, 2018
Assignee:
FARO TECHNOLOGIES, INC.
Inventors:
Robert E. Bridges, Lawrence B. Brown, James K. West, D. Scott Ackerson
Abstract: A method is provided of determining three-dimensional coordinates of an object surface with a laser tracker and structured light scanner. The method includes providing the scanner having a body, a pair of cameras, a projector, a retroreflector and a processor. The projector and cameras are positioned in a non-collinear arrangement. The projector is configured to project a pattern onto the surface. The method also includes providing the tracker which emits a beam of light onto the retroreflector and receives a reflected beam of light. The first location and orientation is measured with the tracker. The first surface pattern is projected onto the surface. A pair of images of the surface pattern is acquired with cameras. The processor determines the 3D coordinates of a first plurality of points in the tracker frame of reference.
Abstract: A three-dimensional (3D) scanner having two cameras and a projector is detachably coupled to a device selected from the group consisting of: an articulated arm coordinate measuring machine, a camera assembly, a six degree-of-freedom (six-DOF) tracker target assembly, and a six-DOF light point target assembly.
Type:
Grant
Filed:
April 21, 2016
Date of Patent:
May 8, 2018
Assignee:
FARO TECHNOLOGIES, INC.
Inventors:
Yazid Tohme, Rolf Heidemann, Markus Grau, Robert E. Bridges
Abstract: A motorized mobile platform includes a robotic articulated arm and a triangulation scanner for performing three-dimensional measurements, the robotic arm and the triangulation scanner removably coupled with connectors.
Type:
Grant
Filed:
May 5, 2016
Date of Patent:
May 8, 2018
Assignee:
FARO TECHNOLOGIES, INC.
Inventors:
Bernd-Dietmar Becker, Hamidreza Rajaie, Oliver Zweigle, Robert E. Bridges, Yazid Tohme
Abstract: A method interactively displays panoramic images of a scene. The method includes measuring 3D coordinates of the scene with a 3D measuring instrument at a first position and a second position. The 3D coordinates are registering into a common frame of reference. Within the scene, a trajectory includes a plurality of trajectory points. Along the trajectory, 2D images are generated from the commonly registered 3D coordinates. A trajectory display mode sequentially displays a collection of 2D images at the trajectory points. A rotational display mode allows a user to select a desired view direction at a given trajectory point. The user selects the trajectory display mode or the rotational display mode and sees the result shown on the display device.