Patents Assigned to Fina Technology, Inc.
  • Patent number: 10550245
    Abstract: High impact polystyrene may be formed with increased swell index and reduced or eliminated discoloration. A process of forming high impact polystyrene may include providing a polymerization system including a polymerization reactor and a devolatilizer. High impact polystyrene may be formed in the polymerization reactor, and sent to the devolatilizer. A polar antioxidant having a hindered phenol structure and an aliphatic amine group, and with a phosphite antioxidant may be added to the polymerization system. In another process, a chemical retarder and a fluorescent whitening agent may be added to the polymerization system. In another process, a chemical retarder that inhibits free radical rubber crosslinking may be added to the polymerization system.
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: February 4, 2020
    Assignee: FINA TECHNOLOGY, INC.
    Inventors: Giovanni Trimino, Carlos DeAnda, David W Knoeppel
  • Patent number: 10544241
    Abstract: A macromonomer precursor is provided that includes a polymeric chain derived from farnesene and a single functional terminal end. The functional terminal end may include a hydroxyl group, an amino group, an epoxy group, an isocyanato group, or a carboxylic acid group. The terminal end of the macromonomer precursor may then be reacted with a (meth)acrylate to form a macromonomer having a (meth)acrylate functionalized terminal end that may be (co)polymerized with radically polymerizable monomers, such as alkyl(meth)acrylate monomers. Alternatively, a copolymer may be obtained by first deriving a poly(meth)acrylate from (meth)acrylate monomers having reactive groups that would allow the macromonomer precursors to be grafted onto the poly(meth)acrylate in a second step. The resulting copolymer may be incorporated as an additive in various formulations, such as a lubricant, a hydraulic fluid, a cosmetic composition, and an adhesive composition.
    Type: Grant
    Filed: September 15, 2016
    Date of Patent: January 28, 2020
    Assignee: Fina Technology, Inc.
    Inventors: Steven K. Henning, Taejun Yoo, Herbert S. Chao
  • Patent number: 10526473
    Abstract: A curable liquid rubber composition having improved viscosity stability is provided. The curable liquid rubber composition includes at least one functionalized crosslinkable polymer that is liquid at 25° C., contains at least one diene monomer in polymerized form, and is functionalized with one or more anhydride functional groups, one or more hydroxyl functional groups or one or more (meth)acrylate functional groups; at least one non-functionalized crosslinkable polymer that is liquid at 25° C., contains at least one diene monomer in polymerized form, and is not functionalized with anhydride, hydroxyl or (meth)acrylate functional groups; at least one metallic monomer coagent which is a metal carboxylate salt containing at least one (meth)acrylate functional group; and at least one inorganic filler.
    Type: Grant
    Filed: April 11, 2018
    Date of Patent: January 7, 2020
    Assignee: FINA TECHNOLOGY, INC.
    Inventor: Olivier Defrain
  • Patent number: 10465021
    Abstract: An uncompounded particulate metallocene-produced polyethylene can have a multimodal molecular weight distribution and particle size distribution measured by obtaining at least four fractions by sieving. A set of Mw values including an Mw value for each fraction can be obtained. A set of Mn values including an Mn value for each fraction can be obtained. A ratio between a standard deviation value of the Mw set and a mean value of the Mw set can be equal to or less than 0.15. A ratio between a standard deviation value of the Mn set and a mean value of the Mn set can be equal to or less than 0.15. The uncompounded particulate metallocene-produced polyethylene can be prepared by a process that includes polymerization in an apparatus. The apparatus can include at least three serially connected loop reactors.
    Type: Grant
    Filed: July 26, 2013
    Date of Patent: November 5, 2019
    Assignee: FINA TECHNOLOGY, INC.
    Inventors: Aurelien Vantomme, Christopher Willocq, Daan Dewachter
  • Patent number: 10457752
    Abstract: According to an aspect of the invention, a curable rubber composition is provided which includes a high molecular weight diene elastomer; optionally, a carbon black composition; a silica composition; and a farnesene polymer comprising farnesene monomers. The farnesene polymer is modified with at least one silane group, has a number average molecular weight of 1,000 g/mol to 100,000 g/mol, and has a glass transition temperature of equal to or less than ?50° C. According to another aspect of the invention, a method for producing a rubber composition for use in a tire is provided. The method includes forming a composition by mixing a farnesene polymer modified with at least one silane group, a silica composition, a high molecular weight diene elastomer, and optionally a carbon black composition, the farnesene polymer comprising farnesene monomers; and curing the composition.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: October 29, 2019
    Assignee: FINA TECHNOLOGY, INC.
    Inventors: Steven K. Henning, Jean-Marc Monsallier, Nan Tian
  • Patent number: 10450446
    Abstract: A low molecular weight co-oligomer containing styrene and ?-methyl styrene in bound form and having a ring and ball softening point not greater than 50° C. is useful in modifying the properties of a diene elastomer-based curable rubber composition capable of being used to manufacture tire treads.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: October 22, 2019
    Assignee: FINA TECHNOLOGY, INC.
    Inventors: Fabien Salort, Jean-Marc Monsallier
  • Publication number: 20190315943
    Abstract: A curable liquid rubber composition having improved viscosity stability is provided. The curable liquid rubber composition includes at least one functionalized crosslinkable polymer that is liquid at 25° C., contains at least one diene monomer in polymerized form, and is functionalized with one or more anhydride functional groups, one or more hydroxyl functional groups or one or more (meth)acrylate functional groups; at least one non-functionalized crosslinkable polymer that is liquid at 25° C., contains at least one diene monomer in polymerized form, and is not functionalized with anhydride, hydroxyl or (meth)acrylate functional groups; at least one metallic monomer coagent which is a metal carboxylate salt containing at least one (meth)acrylate functional group; and at least one inorganic filler.
    Type: Application
    Filed: April 11, 2018
    Publication date: October 17, 2019
    Applicant: FINA TECHNOLOGY, INC.
    Inventor: Olivier Defrain
  • Patent number: 10428166
    Abstract: Molded articles are prepared from propylene-ethylene copolymers and exhibiting improved clarity and strength properties. Articles prepared include bottles and other thin-walled articles. The articles are prepared using an isotactic propylene-ethylene random copolymer resin having an ethylene content of from about 0.5 to about 3 percent by total weight of copolymer, with a xylene solubles content of less than about 1.5 percent. The injection molded article may exhibit less than about 20 percent haze, as determined by ASTM D1003, at a thickness of about 0.08 inch (2.03 mm). Articles may also be prepared from similar copolymers having an ethylene content greater than about 3 percent by total weight of copolymer, with a xylene solubles content of less than about 4 percent by total weight of copolymer. These articles may exhibit less than about 13 percent haze, as determined by ASTM D1003, at a thickness of about 0.08 inch (2.03 mm).
    Type: Grant
    Filed: December 31, 2015
    Date of Patent: October 1, 2019
    Assignee: FINA TECHNOLOGY, INC.
    Inventors: Douglas Burmaster, Owen Hodges, J. Layne Lumus, Lu Ann Kelly, Mark Murphy
  • Publication number: 20190292351
    Abstract: A curable low sulfur liquid rubber composition including at least one polymer which contains, in polymerized form, at least one monomer having a carbon chain of four and a peroxide system comprising at least one organic peroxide having a 10-hour decomposition half-life temperature of from 60° C. to 100° C. The polymer has a vinyl content of 1% to 90% and a number average molecular weight of 800 g/mol to 15,000 g/mol. The curable low sulfur liquid rubber composition has a sulfur content of 0 to 1%, by weight, and is curable at a temperature of 100° C. to 140° C.
    Type: Application
    Filed: March 26, 2018
    Publication date: September 26, 2019
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: Olivier Defrain, Olivier Klein, Philippe Lodifier
  • Patent number: 10414086
    Abstract: A method of forming a thermoformed article may include melt extruding polyethylene to form an extruded sheet. The rheological breadth parameter of the polyethylene may change by no more than about 5% after extrusion relative to the rheological breadth parameter of the polyethylene prior to extrusion. The extruded sheet may be thermoformed within a mold to form the thermoformed article. During thermoforming, the extruded sheet may be subjected to solid-state stretching in one or more directions. The thermoformed article may be retrieved from the mold. The polyethylene may have a rheological breadth parameter of from 0.20 to 0.40, a multimodal molecular weight distribution, a polydispersity (Mw/Mn) of from 5 to 18, a density ranging from 0.940 to 0.970 g/cc, may exhibit tensile strain-hardening, or combinations thereof.
    Type: Grant
    Filed: May 9, 2016
    Date of Patent: September 17, 2019
    Assignee: FINA TECHNOLOGY, INC.
    Inventors: Michael McLeod, Mahesh Patkar, Jon Tippet, Russell McDonald
  • Patent number: 10369552
    Abstract: An alkylation catalyst having a zeolite catalyst component and a binder component providing mechanical support for the zeolite catalyst component is disclosed. The binder component is an ion-modified binder that can include metal ions selected from the group consisting of Co, Mn, Ti, Zr, V, Nb, K, Cs, Ga, B, P, Rb, Ag, Na, Cu, Mg, Fe, Mo, Ce, and combinations thereof. The metal ions reduce the number of acid sites on the zeolite catalyst component. The metal ions can range from 0.1 to 50 wt % based on the total weight of the ion-modified binder. Optionally, the ion-modified binder is present in amounts ranging from 1 to 80 wt % based on the total weight of the catalyst.
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: August 6, 2019
    Assignee: FINA TECHNOLOGY, INC.
    Inventors: Sivadinarayana Chinta, Joseph E Pelati
  • Patent number: 10370523
    Abstract: Curable compositions are prepared using polyisocyanates, hydrophobic hydroxyl-terminated polymers (such as hydroxyl-terminated polyfarnesenes and hydroxyl-terminated polydienes) and organically-modified nanoclays, optionally in combination with chain extenders and/or urethane catalysts. When cured, the compositions yield polyurethane-based sealants useful in insulating glass units which have improved (lowered) moisture vapor transmission rate values as a consequence of the inclusion of the organically-modified nanoclays.
    Type: Grant
    Filed: April 3, 2017
    Date of Patent: August 6, 2019
    Assignee: Fina Technology, Inc.
    Inventors: Herbert Chao, Taejun Yoo, Nan Tian
  • Patent number: 10351640
    Abstract: Methods of forming a catalyst, catalysts, polymerization processes and polymers formed therefrom are described herein. The method of forming a catalyst generally includes contacting an alkyl magnesium compound with an alcohol to form a magnesium alkoxide compound; contacting the magnesium alkoxide compound with a first titanium alkoxide and a first agent to form a reaction product “A”, wherein the titanium alkoxide and the first agent are nonblended individual components prior to contacting the magnesium alkoxide; and sequentially contacting the reaction product “A” with a second agent, followed by a third agent, and subsequently a first reducing agent to form a catalyst component.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: July 16, 2019
    Assignee: Fina Technology, Inc.
    Inventors: Lei Zhang, William Gauthier
  • Patent number: 10336839
    Abstract: A low viscosity polymer having a linear or branched backbone derived from farnesene monomers and at least one terminal-end functionalized with a hydroxyl group. This polymer may be further hydrogenated to reduce unsaturation and acrylated, such that it may be incorporated into a LOCA composition. The LOCA composition may be used in a laminated screen assembly, such as a touch screen, for electronic devices by adhering the LOCA composition between an optically transparent layer, such as a cover glass, and a display. The cured LOCA composition has a refractive index similar to the optically transparent layer. A method of making the low viscosity polymer for the LOCA composition includes anionically polymerizing farnesene monomers, quenching a living end of the polymer to provide the hydroxyl-terminated polymer; hydrogenating the hydroxyl-terminated polymer; and reacting the at least partially saturated hydroxyl-terminated polymer with at least one reagent to provide an acrylate terminated hydrogenated polymer.
    Type: Grant
    Filed: July 17, 2018
    Date of Patent: July 2, 2019
    Assignee: FINA TECHNOLOGY, INC.
    Inventors: Taejun Yoo, Herbert Chao, Steven K Henning
  • Patent number: 10329462
    Abstract: A tackifying resin includes a farnesene-based polymer having monomeric units derived from a farnesene monomer and one or more optional comonomers selected from the group consisting of dienes, branched mono-olefins, and vinyl aromatics and has a softening point greater than or equal to 80 degrees Celsius. A method of making the farnesene-based polymer includes combining a farnesene monomer and a solvent and optionally adding one or more comonomers selected from the group consisting of dienes, branched mono-olefins, and vinyl aromatics, to provide a monomer feed, and polymerizing the monomer feed by combining the monomer feed with a Friedel-Crafts catalyst in a vessel. The tackifying resin may be combined with an elastomer to form a hot melt adhesive composition.
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: June 25, 2019
    Assignee: FINA TECHNOLOGY, INC.
    Inventors: Keith A Nelson, Anaïs Pierre-Justin, Nestor P Hansen
  • Patent number: 10323117
    Abstract: A composition is provided for making a polyurethane that may be incorporated in various products, such as a sealant, a coating, a caulk, an electric potting compound, a membrane, a sponge, a foam, an adhesives, and a propellant binder. The composition includes one or more polyols, one or more isocyanate-group containing compounds having an isocyanate group functionality of at least two, and optionally one or more chain extenders. At least one of the polyols is a farnesene-based polyol having a number average molecular weight less than or equal to 100,000 g/mol and a viscosity at 25° C. less than 10,000 cP. The farnesene-based polyol may be a homopolymer or a copolymer of farnesene. The composition may also comprise additional polyols, such as a polyol of a homopolymer or copolymer of a polydiene. Methods of preparing a polyurethane are also provided.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: June 18, 2019
    Assignee: Fina Technology, Inc.
    Inventors: Nan Tian, Herbert Chao
  • Patent number: 10300459
    Abstract: A process includes reacting a feed stream containing ethanol and optionally acetaldehyde in a dehydration reactor in the presence of a dehydration catalyst system having a Group 4 or Group 5 metal oxide and a support. The process includes obtaining a product stream containing butadiene from the dehydration reactor. Another process includes reacting a feed stream containing ethanol and optionally acetaldehyde in a dehydration reactor in the presence of a dehydration catalyst system containing a tungsten oxide supported on a zeolite or a tantalum oxide supported on a zeolite. The process includes obtaining a product stream containing butadiene from the dehydration reactor.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: May 28, 2019
    Assignee: FINA TECHNOLOGY, INC.
    Inventors: Sivadinarayana Chinta, Kaushik Gandhi
  • Patent number: 10294311
    Abstract: A process may include contacting ethylene monomer with Ziegler-Natta catalyst to form polyethylene. The Ziegler-Natta catalyst may be formed by contacting an alkyl magnesium compound with an alcohol and a metal reagent to form a blend, and contacting the blend with a first agent to form a solution of reaction product “A”. The solution of reaction product “A” may be contacted with a second agent to form a solid reaction product “B”, and the solid reaction product “B” may be contacted with a third agent to form a solid reaction product “C”. The solid reaction product “C” may be contacted with a fourth agent to form a solid reaction product “D”, and the solid reaction product “D” may be contacted with a fifth agent to form a catalyst component.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: May 21, 2019
    Assignee: FINA TECHNOLOGY, INC.
    Inventors: Lei Zhang, David Knoeppel
  • Patent number: 10293331
    Abstract: A catalyst containing nanosize zeolite particles supported on a support material for alkylation reactions, such as the alkylation of benzene to form ethylbenzene, and processes using such a catalyst is disclosed.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: May 21, 2019
    Assignee: FINA TECHNOLOGY, INC.
    Inventors: Sivadinarayana Chinta, Joseph Pelati
  • Patent number: 10252957
    Abstract: Methods and systems for the dehydrogenation of hydrocarbons include a direct contact condenser to remove compounds from an offgas process stream. The reduction of compounds can decrease duty on the offgas compressor by removing steam and aromatics from the offgas. The dehydrogenation reaction system can be applicable for reactions such as the dehydrogenation of ethylbenzene to produce styrene, the dehydrogenation of isoamiline to produce isoprene, or the dehydrogenation of n-pentene to produce piperylene.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: April 9, 2019
    Assignee: FINA TECHNOLOGY, INC.
    Inventors: Vincent A Welch, James R Butler