Patents Assigned to Fina Technology, Inc.
  • Patent number: 10745503
    Abstract: Aspects of the present invention relate to polymers, and particularly to farnesene polymers functionalized with one or more oxirane groups and, optionally, one or more hydroxyl groups. According to one aspect of the invention, provided is an epoxidized and optionally hydroxyl-functionalized polyfarnesene. The epoxidized farnesene polymer has at least one of a side chain or a main backbone functionalized with at least one oxirane group and, optionally, at least one terminal end functionalized with a hydroxyl group. In accordance with another aspect of the invention, a method is provided for preparing an epoxidized and optionally hydroxyl-functionalized polyfarnesene. The method includes epoxidizing a farnesene polymer, which may optionally contain one or more terminal hydroxyl groups, to functionalize at least one of a side chain or a main backbone of the farnesene polymer with an oxirane group.
    Type: Grant
    Filed: August 17, 2018
    Date of Patent: August 18, 2020
    Assignee: FINA TECHNOLOGY, INC.
    Inventors: Herbert Chao, Taejun Yoo, Sabrina Nehache
  • Patent number: 10711077
    Abstract: Catalyst Systems, processes of forming the same and polymers and polymerization processes are described herein.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: July 14, 2020
    Assignee: Fina Technology, Inc.
    Inventors: Lei Zhang, Kenneth Blackmon, David Rauscher
  • Patent number: 10696755
    Abstract: A method including operating a high impact polystyrene (HIPS) reaction system having a devolatilizer downstream of a polymerization reactor, and from which a HIPS product is obtained, and injecting an antioxidant into the HIPS reaction system prior to the devolatilizer, with the antioxidant being one or more aromatic antioxidants. A HIPS product produced by operating a HIPS reaction system to produce a HIPS product, with the HIPS reaction system including a devolatilizer downstream of a polymerization reactor, and including injecting an antioxidant into the HIPS reaction system prior to the devolatilizer, with the antioxidant being comprising one or more aromatic antioxidants. The antioxidant may comprise at least one thiol group, at least one cresol group, or both. A system for producing the HIPS product is also provided.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: June 30, 2020
    Assignee: FINA TECHNOLOGY, INC.
    Inventors: Carlos De Anda, Giovanni Trimino, Brad Stiles
  • Patent number: 10683408
    Abstract: The BOPP film includes a polypropylene, an absence of a nucleating agent, and an additive blended with the polypropylene forming a polypropylene/additive blend, wherein the additive is potassium stearate.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: June 16, 2020
    Assignee: FINA TECHNOLOGY, INC.
    Inventors: Mark Leland, Jill Lawton, Likuo Sun, Leonardo Rodriguez Cortes, Enrique Vazquez
  • Patent number: 10647796
    Abstract: A method comprising preparing a multi-component catalyst system comprising a catalyst and a cocatalyst, and adjusting the level of at least one component of the catalyst system to maintain a user-desired level of catalyst activity throughout a process, wherein the component comprises a catalyst activator and wherein the catalyst activator comprises the catalyst or the cocatalyst. A method comprising contacting a polymerization catalyst system comprising a Ziegler-Natta catalyst and a cocatalyst with a catalyst activator at least twice during a polymerization process, wherein the polymerization process is carried out in a reactor system comprising multiple reactor types.
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: May 12, 2020
    Assignee: FINA TECHNOLOGY, INC.
    Inventors: Kenneth P Blackmon, David Ribour, Shabbir Malbari, Tim Coffy, Michel Daumerie
  • Patent number: 10633513
    Abstract: A curable low sulfur liquid rubber composition including at least one polymer which contains, in polymerized form, at least one monomer having a carbon chain of four and a peroxide system comprising at least one organic peroxide having a 10-hour decomposition half-life temperature of from 60° C. to 100° C. The polymer has a vinyl content of 1% to 90% and a number average molecular weight of 800 g/mol to 15,000 g/mol. The curable low sulfur liquid rubber composition has a sulfur content of 0 to 1%, by weight, and is curable at a temperature of 100° C. to 140° C.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: April 28, 2020
    Assignee: FINA TECHNOLOGY, INC.
    Inventors: Olivier Defrain, Olivier Klein, Philippe Lodefier
  • Publication number: 20200123285
    Abstract: A macromonomer precursor is provided that includes a polymeric chain derived from farnesene and a single functional terminal end. The functional terminal end may include a hydroxyl group, an amino group, an epoxy group, an isocyanato group, or a carboxylic acid group. The terminal end of the macromonomer precursor may then be reacted with a (meth)acrylate to form a macromonomer having a (meth)acrylate functionalized terminal end that may be (co)polymerized with radically polymerizable monomers, such as alkyl(meth)acrylate monomers. Alternatively, a copolymer may be obtained by first deriving a poly(meth)acrylate from (meth)acrylate monomers having reactive groups that would allow the macromonomer precursors to be grafted onto the poly(meth)acrylate in a second step. The resulting copolymer may be incorporated as an additive in various formulations, such as a lubricant, a hydraulic fluid, a cosmetic composition, and an adhesive composition.
    Type: Application
    Filed: December 18, 2019
    Publication date: April 23, 2020
    Applicant: Fina Technology, Inc.
    Inventors: Steven K. Henning, Taejun Yoo, Herbert S. Chao
  • Patent number: 10619014
    Abstract: A masterbatch may include a syndiotactic polypropylene and one or more additives. The one or more additives may be present in the masterbatch in an amount of at least 13 weight percent based on a total weight of the masterbatch. The masterbatch may be formed by mixing the one or more additives with the syndiotactic polypropylene. The masterbatch may be mixed with a resin to form a resin mixture.
    Type: Grant
    Filed: January 19, 2016
    Date of Patent: April 14, 2020
    Assignee: FINA TECHNOLOGY, INC.
    Inventors: Fengkui Li, Likuo Sun
  • Patent number: 10584220
    Abstract: A modified polymer includes a diene-based polymeric chain and at least one end terminated with a blocked isocyanate group. The blocked isocyanate group may be the reaction product of an isocyanate and a blocking agent, and the blocking agent is selected, such that the modified polymer deblocks at temperatures of at least 100 C. An aqueous emulsion of the modified polymer may be provided that may be surfactant-free. The emulsion may be combined with one or more latexes to provide a treatment solution for a fabric or fiber that does not require the use of resorcinol and formaldehyde. Once treated and dried, the fabric or fiber may be used to impart tensile strength to rubber products, such as tires, air springs, flexible couplings, power transmission belts, conveyor belts, and fluid routing hoses.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: March 10, 2020
    Assignee: Fina Technology, Inc.
    Inventors: Fabien Salort, Jean-Marc Monsallier
  • Patent number: 10584823
    Abstract: A method includes transporting water containing chlorine dioxide, chlorine, chloramines, or hypochlorites through a pipe. The method includes forming a polyethylene resin using a catalyst, mixing the polyethylene resin with an antioxidant, wherein the antioxidant is a thioester, a hindered amine light stabilizer or 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene to form a resin/antioxidant mixture, extruding pipe from the resin/antioxidant mixture, and flowing water containing chlorine dioxide, chlorine, chloramines, or hypochlorites through the pipe. An extruded article is adapted for use in containment and/or transport of water that contains chlorine dioxide, chlorine, chloramines, or hypochlorites. The extruded article includes a polyethylene resin and an antioxidant. The antioxidant is a thioester, a hindered amine light stabilizer or 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene.
    Type: Grant
    Filed: June 10, 2015
    Date of Patent: March 10, 2020
    Assignee: FINA TECHNOLOGY, INC.
    Inventors: William J Gauthier, Crystal Bryson, Diana Nash, Lu Ann Kelly, Jason Clark, Ruby Curtis, Toby Stevens
  • Patent number: 10550245
    Abstract: High impact polystyrene may be formed with increased swell index and reduced or eliminated discoloration. A process of forming high impact polystyrene may include providing a polymerization system including a polymerization reactor and a devolatilizer. High impact polystyrene may be formed in the polymerization reactor, and sent to the devolatilizer. A polar antioxidant having a hindered phenol structure and an aliphatic amine group, and with a phosphite antioxidant may be added to the polymerization system. In another process, a chemical retarder and a fluorescent whitening agent may be added to the polymerization system. In another process, a chemical retarder that inhibits free radical rubber crosslinking may be added to the polymerization system.
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: February 4, 2020
    Assignee: FINA TECHNOLOGY, INC.
    Inventors: Giovanni Trimino, Carlos DeAnda, David W Knoeppel
  • Patent number: 10544241
    Abstract: A macromonomer precursor is provided that includes a polymeric chain derived from farnesene and a single functional terminal end. The functional terminal end may include a hydroxyl group, an amino group, an epoxy group, an isocyanato group, or a carboxylic acid group. The terminal end of the macromonomer precursor may then be reacted with a (meth)acrylate to form a macromonomer having a (meth)acrylate functionalized terminal end that may be (co)polymerized with radically polymerizable monomers, such as alkyl(meth)acrylate monomers. Alternatively, a copolymer may be obtained by first deriving a poly(meth)acrylate from (meth)acrylate monomers having reactive groups that would allow the macromonomer precursors to be grafted onto the poly(meth)acrylate in a second step. The resulting copolymer may be incorporated as an additive in various formulations, such as a lubricant, a hydraulic fluid, a cosmetic composition, and an adhesive composition.
    Type: Grant
    Filed: September 15, 2016
    Date of Patent: January 28, 2020
    Assignee: Fina Technology, Inc.
    Inventors: Steven K. Henning, Taejun Yoo, Herbert S. Chao
  • Patent number: 10526473
    Abstract: A curable liquid rubber composition having improved viscosity stability is provided. The curable liquid rubber composition includes at least one functionalized crosslinkable polymer that is liquid at 25° C., contains at least one diene monomer in polymerized form, and is functionalized with one or more anhydride functional groups, one or more hydroxyl functional groups or one or more (meth)acrylate functional groups; at least one non-functionalized crosslinkable polymer that is liquid at 25° C., contains at least one diene monomer in polymerized form, and is not functionalized with anhydride, hydroxyl or (meth)acrylate functional groups; at least one metallic monomer coagent which is a metal carboxylate salt containing at least one (meth)acrylate functional group; and at least one inorganic filler.
    Type: Grant
    Filed: April 11, 2018
    Date of Patent: January 7, 2020
    Assignee: FINA TECHNOLOGY, INC.
    Inventor: Olivier Defrain
  • Patent number: 10465021
    Abstract: An uncompounded particulate metallocene-produced polyethylene can have a multimodal molecular weight distribution and particle size distribution measured by obtaining at least four fractions by sieving. A set of Mw values including an Mw value for each fraction can be obtained. A set of Mn values including an Mn value for each fraction can be obtained. A ratio between a standard deviation value of the Mw set and a mean value of the Mw set can be equal to or less than 0.15. A ratio between a standard deviation value of the Mn set and a mean value of the Mn set can be equal to or less than 0.15. The uncompounded particulate metallocene-produced polyethylene can be prepared by a process that includes polymerization in an apparatus. The apparatus can include at least three serially connected loop reactors.
    Type: Grant
    Filed: July 26, 2013
    Date of Patent: November 5, 2019
    Assignee: FINA TECHNOLOGY, INC.
    Inventors: Aurelien Vantomme, Christopher Willocq, Daan Dewachter
  • Patent number: 10457752
    Abstract: According to an aspect of the invention, a curable rubber composition is provided which includes a high molecular weight diene elastomer; optionally, a carbon black composition; a silica composition; and a farnesene polymer comprising farnesene monomers. The farnesene polymer is modified with at least one silane group, has a number average molecular weight of 1,000 g/mol to 100,000 g/mol, and has a glass transition temperature of equal to or less than ?50° C. According to another aspect of the invention, a method for producing a rubber composition for use in a tire is provided. The method includes forming a composition by mixing a farnesene polymer modified with at least one silane group, a silica composition, a high molecular weight diene elastomer, and optionally a carbon black composition, the farnesene polymer comprising farnesene monomers; and curing the composition.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: October 29, 2019
    Assignee: FINA TECHNOLOGY, INC.
    Inventors: Steven K. Henning, Jean-Marc Monsallier, Nan Tian
  • Patent number: 10450446
    Abstract: A low molecular weight co-oligomer containing styrene and ?-methyl styrene in bound form and having a ring and ball softening point not greater than 50° C. is useful in modifying the properties of a diene elastomer-based curable rubber composition capable of being used to manufacture tire treads.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: October 22, 2019
    Assignee: FINA TECHNOLOGY, INC.
    Inventors: Fabien Salort, Jean-Marc Monsallier
  • Publication number: 20190315943
    Abstract: A curable liquid rubber composition having improved viscosity stability is provided. The curable liquid rubber composition includes at least one functionalized crosslinkable polymer that is liquid at 25° C., contains at least one diene monomer in polymerized form, and is functionalized with one or more anhydride functional groups, one or more hydroxyl functional groups or one or more (meth)acrylate functional groups; at least one non-functionalized crosslinkable polymer that is liquid at 25° C., contains at least one diene monomer in polymerized form, and is not functionalized with anhydride, hydroxyl or (meth)acrylate functional groups; at least one metallic monomer coagent which is a metal carboxylate salt containing at least one (meth)acrylate functional group; and at least one inorganic filler.
    Type: Application
    Filed: April 11, 2018
    Publication date: October 17, 2019
    Applicant: FINA TECHNOLOGY, INC.
    Inventor: Olivier Defrain
  • Patent number: 10428166
    Abstract: Molded articles are prepared from propylene-ethylene copolymers and exhibiting improved clarity and strength properties. Articles prepared include bottles and other thin-walled articles. The articles are prepared using an isotactic propylene-ethylene random copolymer resin having an ethylene content of from about 0.5 to about 3 percent by total weight of copolymer, with a xylene solubles content of less than about 1.5 percent. The injection molded article may exhibit less than about 20 percent haze, as determined by ASTM D1003, at a thickness of about 0.08 inch (2.03 mm). Articles may also be prepared from similar copolymers having an ethylene content greater than about 3 percent by total weight of copolymer, with a xylene solubles content of less than about 4 percent by total weight of copolymer. These articles may exhibit less than about 13 percent haze, as determined by ASTM D1003, at a thickness of about 0.08 inch (2.03 mm).
    Type: Grant
    Filed: December 31, 2015
    Date of Patent: October 1, 2019
    Assignee: FINA TECHNOLOGY, INC.
    Inventors: Douglas Burmaster, Owen Hodges, J. Layne Lumus, Lu Ann Kelly, Mark Murphy
  • Publication number: 20190292351
    Abstract: A curable low sulfur liquid rubber composition including at least one polymer which contains, in polymerized form, at least one monomer having a carbon chain of four and a peroxide system comprising at least one organic peroxide having a 10-hour decomposition half-life temperature of from 60° C. to 100° C. The polymer has a vinyl content of 1% to 90% and a number average molecular weight of 800 g/mol to 15,000 g/mol. The curable low sulfur liquid rubber composition has a sulfur content of 0 to 1%, by weight, and is curable at a temperature of 100° C. to 140° C.
    Type: Application
    Filed: March 26, 2018
    Publication date: September 26, 2019
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: Olivier Defrain, Olivier Klein, Philippe Lodifier
  • Patent number: 10414086
    Abstract: A method of forming a thermoformed article may include melt extruding polyethylene to form an extruded sheet. The rheological breadth parameter of the polyethylene may change by no more than about 5% after extrusion relative to the rheological breadth parameter of the polyethylene prior to extrusion. The extruded sheet may be thermoformed within a mold to form the thermoformed article. During thermoforming, the extruded sheet may be subjected to solid-state stretching in one or more directions. The thermoformed article may be retrieved from the mold. The polyethylene may have a rheological breadth parameter of from 0.20 to 0.40, a multimodal molecular weight distribution, a polydispersity (Mw/Mn) of from 5 to 18, a density ranging from 0.940 to 0.970 g/cc, may exhibit tensile strain-hardening, or combinations thereof.
    Type: Grant
    Filed: May 9, 2016
    Date of Patent: September 17, 2019
    Assignee: FINA TECHNOLOGY, INC.
    Inventors: Michael McLeod, Mahesh Patkar, Jon Tippet, Russell McDonald