Patents Assigned to FLIR System, Inc.
-
Patent number: 11227365Abstract: Various techniques are provided for reducing noise in captured image frames. In one example, a method includes determining row values for image frames comprising scene information and noise information. The method also includes performing first spectral transforms in a first domain on corresponding subsets of the row values to determine first spectral coefficients. The method also includes performing second spectral transforms in a second domain on corresponding subsets of the first spectral coefficients to determine second spectral coefficients. The method also includes selectively adjusting the second spectral coefficients. The method also includes determining row correction terms based on the adjusted second spectral coefficients to reduce the noise information of the image frames. Additional methods and systems are also provided.Type: GrantFiled: November 20, 2019Date of Patent: January 18, 2022Assignee: FLIR Systems, Inc.Inventors: Stephanie Lin, Nicholas Högasten
-
Patent number: 11212466Abstract: Techniques are disclosed for facilitating multiple microbolometer selection for simultaneous readout. In one example, a device includes a plurality of microbolometers. The plurality of microbolometers includes a first set and a second set of serially-connected microbolometers. The device further includes a first plurality of switches configured to selectively short the plurality of microbolometers. The device further includes a second plurality of switches configured to selectively couple the plurality of microbolometers to ground. The device further includes a third plurality of switches configured to selectively provide a bias signal to the plurality of microbolometers. The device further includes a processing circuit configured to configure the first plurality, second plurality, and third plurality of switches to cause simultaneous read out of one microbolometer of the first set and one microbolometer of the second set. Related methods and systems are also provided.Type: GrantFiled: June 23, 2020Date of Patent: December 28, 2021Assignee: FLIR Systems, Inc.Inventors: Brian B. Simolon, Naseem Y. Aziz
-
Patent number: 11196217Abstract: Systems and techniques are disclosed for an electronic device that may be coupled to an external device via a connector. The external device may have a protective cover, and different protective covers may have different thicknesses. The electronic device may include a connector adjustment mechanism that may adjust a position of the connector depending on the cover thickness.Type: GrantFiled: March 27, 2019Date of Patent: December 7, 2021Assignee: FLIR Systems, Inc.Inventor: Marcel Tremblay
-
Patent number: 11169028Abstract: Flight based infrared imaging systems and related techniques, and in particular UAS based thermal imaging systems, are provided to improve the monitoring capabilities of such systems over conventional infrared monitoring systems. An infrared imaging system is configured to compensate for various environmental effects (e.g., position and/or strength of the sun, atmospheric effects) to provide high resolution and accuracy radiometric measurements of targets imaged by the infrared imaging system. An infrared imaging system is alternatively configured to monitor and determine environmental conditions, modify data received from infrared imaging systems and other systems, modify flight paths and other commands, and/or create a representation of the environment.Type: GrantFiled: June 4, 2018Date of Patent: November 9, 2021Assignee: FLIR Systems, Inc.Inventors: Jeffrey D. Frank, Thomas J. Scanlon, Theodore R. Hoelter, Nicholas Hogasten, Austin A. Richards, Michael Kent, Julie R. Moreira, Pierre M. Boulanger, Raymond Valdes, Jonathan Li
-
Patent number: 11108967Abstract: Techniques are disclosed for systems and methods for facilitating infrared imaging in multiple imaging modes. A device may include an infrared image capture circuit and at least one processing circuit. The infrared image capture circuit may be configured to detect first infrared data and generate a first pixel value based on the first infrared data and a first imaging mode among multiple imaging modes. The at least one processing circuit may be configured to compare the first pixel value to a set of saturation threshold values associated with the first imaging mode. The at least one processing circuit may be further configured to select an imaging mode among the multiple imaging modes based on the comparison of the first pixel value. The at least one processing circuit may be further configured to set the infrared image capture circuit to generate a second pixel value based on the selected imaging mode.Type: GrantFiled: July 15, 2019Date of Patent: August 31, 2021Assignee: FLIR Systems, Inc.Inventors: Joseph Kostrzewa, Naseem Y. Aziz, John D. Schlesselmann, Brian B. Simolon, Theodore B. Hoelter
-
Patent number: 11100618Abstract: Various techniques are disclosed for separating and removing low-frequency shadow or shading (also referred to herein as “non-uniformity”) from images that have been corrupted by the non-uniformity. A non-uniformity estimate that approximates the non-uniformity effect on the corrupted image may be generated by iteratively adding new blotches of non-uniformity data represented by two-dimensional (2D) functions, such as 2D Gaussian functions, to the non-uniformity estimate and applying filters to smoothen the 2D functions. In each iteration of the non-uniformity estimate generation process, a new non-uniformity update candidate that minimizes a cost function is identified. The corrupted image is processed based on the non-uniformity estimate to generate a corrected image.Type: GrantFiled: September 11, 2019Date of Patent: August 24, 2021Assignee: FLIR Systems, Inc.Inventors: Enrique Sanchez-Monge, Alessandro Foi
-
Patent number: 11087512Abstract: A highly visible overlay system may include a display system and contrasting visible element configuration components configured to define contrasting visible elements. An imaging component is configured to capture an image of a target scene for display. A processing component is configured to construct the plurality of contrasting visual elements in accordance with a visual acuity factor, and generate an electronic overlay constructed of the contrasting visual elements. A display component is configured to display the constructed overlay in combination with the image of the target scene, with the overlay being displayed as an overlay on the image of the target scene. The contrasting visual elements may include a white block and a black block, configured to satisfy visual acuity factor, display configuration and field of view information.Type: GrantFiled: January 5, 2018Date of Patent: August 10, 2021Assignee: FLIR Systems, Inc.Inventor: Dan Darrel Hoffman
-
Patent number: 11070747Abstract: Various techniques are provided for implementing a segmented focal plane array (FPA) of infrared sensors. In one example, a system includes a segmented FPA. The segmented FPA includes a top die having an array of infrared sensors (e.g., bolometers). The top die may also include a portion of a read-out integrated circuit (ROIC). The segmented FPA also includes a bottom die having at least a portion of the ROIC. The top and the bottom dies are electrically coupled via inter-die connections. Advantageously, the segmented FPA may be fabricated with a higher yield and a smaller footprint compared with conventional FPA architectures. Moreover, the segmented FPA may be fabricated using different semiconductor processes for each die.Type: GrantFiled: March 12, 2018Date of Patent: July 20, 2021Assignee: FLIR Systems, Inc.Inventors: Brian Simolon, Eric A. Kurth, Mark Nussmeier, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Barbara Sharp
-
Patent number: 11063159Abstract: An optoelectronic device package includes an optoelectronic device having an active region on a first surface of a substrate, a bond pad area on the first surface that includes at least one contact pad electrically connected to the active region, and a cap having a first cap surface and a second cap surface, the first cap surface being secured to the first surface of the substrate, the cap covering the optoelectronic device. At least one of the cap and the substrate has an angled sidewall extending at an angle relative to an axis parallel to an optical path. The at least one contact pad is exposed by and adjacent to the angled sidewall. An electrical line extends from each of the at least one contact pad along the angled sidewall and to the second cap surface that does not overlap the active region.Type: GrantFiled: March 21, 2019Date of Patent: July 13, 2021Assignee: FLIR Systems, Inc.Inventors: Hagit Gershtenman-Avsian, Andrey Grinman, Alexander Feldman, Alan D. Kathman, David Ovrutsky
-
Patent number: 11029211Abstract: Flight based infrared imaging systems and related techniques, and in particular UAS based thermal imaging systems, are provided to improve the monitoring capabilities of such systems over conventional infrared monitoring systems. An infrared imaging system is configured to compensate for various environmental effects (e.g., position and/or strength of the sun, atmospheric effects) to provide high resolution and accuracy radiometric measurements of targets imaged by the infrared imaging system. An infrared imaging system is alternatively configured to monitor and determine environmental conditions, modify data received from infrared imaging systems and other systems, modify flight paths and other commands, and/or create a representation of the environment.Type: GrantFiled: May 23, 2018Date of Patent: June 8, 2021Assignee: FLIR Systems, Inc.Inventors: Jeffrey D. Frank, Theodore R. Hoelter, Nicholas Högasten, Austin A. Richards, Michael Kent, Julie R. Moreira, Pierre Boulanger, Raymond Valdes, Jonathan Li
-
Patent number: 11031432Abstract: Systems and methods are directed to vertical legs for an infrared detector. For example, an infrared imaging device may include a microbolometer array in which each microbolometer includes a bridge and a vertical leg structure that couples the bridge to a substrate such as a readout integrated circuit. The vertical leg structure may run along a path that is parallel to a plane defined by the bridge and may be oriented perpendicularly to the plane. The path may be disposed within, below, or above the plane defined by the bridge.Type: GrantFiled: December 19, 2018Date of Patent: June 8, 2021Assignee: FLIR Systems, Inc.Inventors: James L. Dale, Christopher Chan, Eric A. Kurth
-
Patent number: 11030775Abstract: Various techniques are disclosed for calibrating surveillance camera systems with minimal user input. Such surveillance camera calibration techniques may be implemented in accordance with embodiments of the present disclosure to facilitate calibration and parameter configuration such that a surveillance camera can be installed and set up for video analytics with minimal input from a user without technical training or knowledge.Type: GrantFiled: March 10, 2017Date of Patent: June 8, 2021Assignee: FLIR Systems, Inc.Inventors: Pieter Messely, Dwight T. Dumpert
-
Patent number: 11015979Abstract: A bolometer circuit may include an active bolometer configured to receive external infrared (IR) radiation. The bolometer circuit may be configured to reduce power consumption at high temperatures. In particular, the bolometer circuit may include additional resistors provided in the resistive loads for bolometer conduction paths to limit power at high temperatures. In some embodiments, the bias (e.g., a voltage level) to the gates of transistors in the resistive loads for the bolometer conduction paths may be adjusted based on temperature to limit power and/or current at high temperatures. In bolometer circuits with a feedback resistor provided across an amplifier to configure a feedback amplifier, a circuit with adjustable amplifier power may be provided to save power. In some embodiments, a bolometer circuits may be provided with reduced gains to allow for very hot scenes to be imaged without railing the output.Type: GrantFiled: August 16, 2019Date of Patent: May 25, 2021Assignee: FLIR Systems, Inc.Inventors: Naseem Y. Aziz, Brian B. Simolon
-
Patent number: 11012648Abstract: Systems and methods are disclosed herein to detect pixels exhibiting anomalous behavior in captured image frames. In some examples, temporal anomalous behavior may be identified, such as flickering pixels exhibiting large magnitude changes in pixel values that vary rapidly from frame-to-frame. In some examples, spatial anomalous behavior may be identified, such as pixels exhibiting values that deviate from an expected linear response in comparison with other neighbor pixels.Type: GrantFiled: August 16, 2019Date of Patent: May 18, 2021Assignee: FLIR Systems, Inc.Inventors: Joseph Kostrzewa, Nicholas Högasten, Theodore R. Hoelter, Scott McNally
-
Patent number: 11010878Abstract: Various embodiments of the present disclosure may include an imaging system that allows for absolute radiometry of low dynamic range (LDR) radiometric images down-sampled from high dynamic range (HDR) radiometric thermal images. The imaging system may capture HDR images. The HDR images may be converted to LDR images by a transfer function. In certain embodiments, a video and/or a stream of HDR images may be captured. A sequence of frames may be defined for at least a plurality of the HDR images. Each of the HDR images of the sequence of frames may be converted to LDR images using the same transfer function.Type: GrantFiled: April 24, 2019Date of Patent: May 18, 2021Assignee: FLIR Systems, Inc.Inventors: Nicholas Hogasten, Austin A. Richards
-
Patent number: 10996542Abstract: An infrared imaging system is provided with a shutter assembly having an integrated thermistor. In one example, a device includes a shutter assembly. The shutter assembly includes a paddle configured to move between an open position and a closed position. The paddle is configured to block external infrared radiation from reaching a focal plane array (FPA) in a closed position, and pass the external infrared radiation to the FPA in an open position. The shutter assembly also includes an embedded thermistor configured to sense a temperature of the paddle when the paddle is in the open position. In another example, an infrared sensor assembly includes a first set of mechanically engageable electrical contacts for engaging with a second set of mechanically engageable electrical contacts of a shutter assembly electrically coupled with a thermistor through a conductive path. Additional devices and related methods are also provided.Type: GrantFiled: July 15, 2019Date of Patent: May 4, 2021Assignee: FLIR Systems, Inc.Inventors: Joseph Kostrzewa, Bruce A. Covington, Marcel Tremblay, Theodore R. Hoelter, Pierre M. Boulanger
-
Patent number: 10996676Abstract: Techniques are disclosed for systems and methods to provide proactive directional control for a mobile structure. A proactive directional control system may include a logic device, a memory, one or more sensors, one or more actuators/controllers, and modules to interface with users, sensors, actuators, and/or other modules of a mobile structure. The logic device is adapted to determine a steering angle disturbance estimate based on environmental conditions associated with the mobile structure, and the steering angle disturbance estimate is used to adjust a directional control signal provided to an actuator of the mobile structure. The logic device may also be adapted to receive directional data about a mobile structure and determine nominal vehicle feedback from the directional data, which may be used to adjust and/or stabilize the directional control signal provided to the actuator.Type: GrantFiled: June 30, 2017Date of Patent: May 4, 2021Assignee: FLIR Systems, Inc.Inventors: Mark Johnson, Ian Matt, Christopher Yeomans
-
Patent number: 10986288Abstract: Various techniques are provided to perform flat field correction (FFC) for infrared cameras. In one example, a system includes a focal plane array (FPA) of an infrared camera configured to capture thermal image data in response to infrared radiation received by the FPA via an optical path of the infrared camera. The system further includes a memory configured to store a set of supplemental FFC values. The system further includes a processor configured to determine a scale factor based at least on a temperature and/or a rate of temperature change of an internal component of the infrared camera; generate a scaled set of supplemental FFC values based on the scale factor and set of supplemental FFC values; and apply the scaled set of supplemental FFC values to the thermal image data to adjust for non-uniformities associated with at least a portion of the first optical path.Type: GrantFiled: January 7, 2020Date of Patent: April 20, 2021Assignee: FLIR Systems, Inc.Inventors: Joseph Kostrzewa, Jason Gardner
-
Patent number: 10986338Abstract: A system for capturing a thermal video stream includes a thermal image capture component, such as an IR camera, configured to capture and digitize the thermal video stream having n-bits of data per pixel, a memory configured to store the captured thermal images, and a processor. The processor is configured to select captured thermal images as frames for a video stream and subdivide each captured thermal image into separate m-bit and k-bit image streams. The processor is further configured to compress the m-bit thermal image stream in a video compression format that includes frame and metadata, compress the k-bit image stream using a lossless or substantially lossless compression format, and incorporate the compressed k-bit image stream into the coded m-bit video stream as metadata.Type: GrantFiled: December 4, 2018Date of Patent: April 20, 2021Assignee: FLIR Systems, Inc.Inventor: Steffen De Muynck
-
Patent number: D937340Type: GrantFiled: April 3, 2018Date of Patent: November 30, 2021Assignee: FLIR Systems, Inc.Inventor: Chaim Shain