Abstract: An L-shaped sealing ring comprising two legs connected with one another to form an L-shape in cross section. A length of a first leg is part of a lateral surface of revolution about an axis of the L-shaped sealing ring. The first leg lies between the first length and the axis of revolution. A second leg is bounded toward the environment by a second length, wherein the first and second lengths are connected with one another via a connection contour. An intersection of first and second lines, forms a corner of a triangle, wherein the respective end points of the first and second lengths form other vertices of the triangle. The L-shaped sealing ring is so embodied that the surface area of the cross sectional area of the body of the L-shaped sealing ring in the triangle amounts to, at most, 60% of the areal content of the triangle, wherein the area of the L-shaped sealing ring in the triangle is non-concave.
Abstract: A magneto inductive, flow measuring device including a measuring tube and, arranged on the measuring tube, at least one magnet system, which includes a pole shoe. The measuring tube has at least one planar area and an otherwise cylindrical lateral surface, which border the measuring tube from its environment. The pole shoe is so formed relative to the measuring tube that it contacts the planar area of the measuring tube and has a predetermined minimum separation for the otherwise cylindrical lateral surface of the measuring tube. The pole shoe surrounds the measuring tube with a circular arc angle of at least 10°.
Type:
Grant
Filed:
June 5, 2012
Date of Patent:
July 12, 2016
Assignee:
Endress + Hauser Flowtec AG
Inventors:
Frank Voigt, Gunther Bahr, Diego Uerlings, Werner Wohlgemuth
Abstract: A method for producing at least one oscillation measurement signal, which has vibrations of a vibratory body are registered. A temperature sensor is applied thermally attached with a non fluid contacting, second surface of the vibratory body for producing a temperature measurement signal representing a time curve of a variable temperature of the vibratory body. The temperature measurement signal can follow, however time delayed, a change of the temperature of the vibratory body from a beginning temperature value, to a new temperature value. Based on the oscillation measurement signal as well as the temperature measurement signal, density, measured values are produced representing the density, wherein, during such, discrepancies possibly occurring between the time curve of the temperature of the vibratory body and the temperature measurement signal are taken into consideration, respectively at least partially compensated.
Type:
Grant
Filed:
December 17, 2012
Date of Patent:
June 28, 2016
Assignee:
Endress + Hauser Flowtec AG
Inventors:
Coen Van Dijk, Omar Momente, Heinerich Hagenmeyer
Abstract: The measuring system comprises: a vibration element for guiding flowing medium and having a lumen; and a vibration element, which is adapted to be contacted, at least at times, by a part of the medium. Additionally, the measuring system includes at least two oscillation exciters for exciting resonant oscillations of the respective vibration elements, two mutually spaced oscillation sensors for registering vibrations of the vibration element, each of which generates an oscillatory signal dependent on vibrations of the vibration element, as well as at least one oscillation sensor for registering vibrations of the vibration element and generating, dependent on vibrations of the vibration element, an oscillatory signal, which has a signal frequency corresponding to a resonant frequency, of the vibration element.
Abstract: A magneto inductive flow measuring device comprising a measuring tube and coil systems arranged thereon, wherein each coil system includes a coil and a coil core so led through the coil that the coil core protrudes from the coil, wherein two coil systems are so arranged on the measuring tube on a line parallel to a longitudinal axis of the measuring tube that a pole shoe is arranged between the measuring tube and the coil cores protruding from the coil systems.
Abstract: A method for controlling excitation energy in a coil arrangement of a flow measuring device having an energy buffer system for storing energy and embodied as a two-conductor field device is provided for producing a magnetic field B passing through a medium as a function of the excitation energy. The wherein the flow measuring device has a plurality of operating states, between which it transfers and which describe an excitation current pulsed in a time interval.
Type:
Grant
Filed:
May 21, 2013
Date of Patent:
May 17, 2016
Assignee:
Endress + Hauser Flowtec AG
Inventors:
Andre Spahlinger, Thomas Kung, Markus Rufenacht
Abstract: A radio unit RU for field devices used in automation technology can be detachably connected to a field device. Via the radio unit RU, a radio connection to a service unit SU is possible over a radio network. The radio unit RU reads an identifier of the field device F1 from a memory in the field device and uses this identifier to report in the radio network.
Abstract: An ultrasonic flow measurement device for ascertaining flow velocity, respectively volume flow, of a fluid, especially a gas or a liquid, using a travel-time difference method, comprising: a measuring tube having a straight measuring tube axis; at least one transmitter for transmitting an acoustic signal; at least one receiver for receiving the acoustic signal; and at least one reflection surface for reflecting the acoustic signal. The transmitter and the receiver are arranged on the tube wall of the measuring tube in such a manner that they can transmit the acoustic signal inclined or perpendicularly to the flow direction of the fluid, wherein at least one reflection surface is embodied concavely in a preferential direction; and a method for ascertaining flow velocity, respectively volume flow, of a fluid.
Type:
Grant
Filed:
January 29, 2013
Date of Patent:
May 10, 2016
Assignee:
ENDRESS + HAUSER FLOWTEC AG
Inventors:
Achim Wiest, Sascha Grunwald, Andrea Berger, Oliver Brumberg
Abstract: The viscometer provides a viscosity value (X?) which represents the viscosity of a fluid flowing in a pipe connected thereto. It comprises a vibratory transducer with at least one flow tube for conducting the fluid, which communicates with the pipe. Driven by an excitation assembly, the flow tube is vibrated so that friction forces are produced in the fluid. The viscometer further includes meter electronics which feed an excitation current (iexc) into the excitation assembly. By means of the meter electronics, a first internal intermediate value (X1) is formed, which corresponds with the excitation current (iexc) and thus represents the friction forces acting in the fluid. According to the invention, a second internal intermediate value (X2), representing inhomogeneities in the fluid, is generated in the meter electronics, which then determine the viscosity value (X?) using the two intermediate values (X1, X2).
Abstract: A bolt sleeve for insulating a bolt or machine screw, wherein the bolt sleeve is so embodied that it axially shortens by a predetermined amount in the case of a force of predetermined size acting axially on it, whereupon the bolt sleeve assumes at least partially the shape of a bellows.
Abstract: An ultrasonic transducer, comprising a coupling element which has a first recess, the first recess being provided for the arrangement of a piezoelectric element which feeds an ultrasound signal into the coupling element, and there being disposed between the piezoelectric element and the coupling element an intermediate layer which comprises a metal disc, the metal disc comprising retaining elements each with a first segment lying on the same plane as the metal disc and projecting radially from the perimeter of the metal disc and each having a second segment which adjoins the first segment, projects from the plane of the metal plate and is connected to the first segment.
Abstract: A measuring electronics serves for ascertaining a potential difference (??12) between a first measuring electrode and a second measuring electrode. For such purpose, the measuring electronics comprises a reference electrode, an input circuit having two circuit inputs electrically connectable with the first, respectively second, measuring electrodes and two signal voltage outputs, a compensation circuit, a measuring and control circuit having two signal voltage inputs, two signal voltage inputs electrically and a compensation control output. The compensation circuit is adapted to provide on the first compensation voltage output a compensation voltage, namely an adjustable direct voltage referenced to the reference potential, and on the second compensation voltage output a compensation voltage, namely a direct voltage referenced to the reference potential.
Type:
Grant
Filed:
June 28, 2013
Date of Patent:
April 5, 2016
Assignee:
Endress + Hauser Flowtec AG
Inventors:
Thomas Kung, Andre Spahlinger, Markus Rufenacht
Abstract: A measuring transducer comprises at least one measuring tube for carrying a flowing medium as well as a transducer housing mechanically coupled with the at least one measuring tube. The transducer housing includes: an inner shell forming a cavity accommodating the at least one measuring tube; and an outer cladding formed at least partially by means of yarn, namely cladding placed outside of the cavity and surrounding the inner shell.
Abstract: A sensor module serves for registering a flow velocity and/or a volume flow rate, of a fluid flowing in a pipeline. The sensor module comprises a platform (PS) having, extending therein from an inlet opening to a drain opening remote therefrom and communicating with the lumen of the pipeline, a flow path for guiding a fluid volume portion branched from the fluid flowing in the pipeline and a transducer element for producing at least one sensor signal influenced by the fluid guided in the flow path. The flow path is additionally so embodied that an imaginary central axis (LB) of the intermediate region is not parallel to an imaginary central axis of the intake region and/or not parallel to an imaginary central axis of the drain region.
Abstract: A method for verifying the reliability of ascertained measurement data of an ultrasonic, flow measurement made according to the travel-time difference method, wherein an ultrasonic flow measuring device having at least two ultrasonic transducers is used to transmit and receive ultrasonic signals inclined in or counter to a flow direction of a measured medium. A first ultrasound disturbance signal is registered within a first time window before receiving a first ultrasound wanted signal, which essentially propagates through the measured medium between the transducers. The first ultrasound disturbance signal propagates at least partially in the measured medium between the ultrasonic transducers, wherein a second ultrasound disturbance signal is registered within a second time window before receiving a second ultrasound wanted signal, which essentially propagates through the measured medium between the transducers.
Abstract: A method for manufacturing an ultrasonic, flow measuring device, characterized by method steps as follows: selecting a number larger than one of straight subsections of the first signal path, which should have different distances from the measuring tube axis; establishing the distances of the straight subsections from measuring tube axis; calculating values of lengths of the straight subsections, as projected on the measuring tube axis, as a function of the number of straight subsections with the same distance from the measuring tube axis and the respective distances from the measuring tube axis; and inserting the at least a first reflection surface in the measuring tube such that the acoustic signal on the path from the first transmitter to the first receiver is so reflected on at least the first reflection surface that the first signal path comprises the straight subsections with the selected distances and the calculated values of the lengths as projected on the measuring tube axis.
Abstract: A Coriolis mass flow measuring device comprises a measuring device electronics as well as, connected thereto, a measuring transducer comprising at least one measuring tube, an oscillation exciter for oscillating the at least one measuring tube and, mutually spaced along the measuring tube, two oscillation sensors for generating oscillation signals representing oscillations of the measuring tube. The measuring tube is adapted to be flowed through by a medium and during that to be caused to vibrate in such a manner that the measuring tube executes wanted oscillations having a wanted frequency. The wanted oscillations are suitable to induce in the flowing medium, dependent on its mass flow rate, Coriolis forces suitable for bringing about a measurement effect of a first type, namely Coriolis oscillations of the wanted frequency superimposed on the wanted oscillations. These Coriolis oscillations are, in turn, suitable to induce in the medium centrifugal forces dependent on its mass flow rate and on its density.
Abstract: A housing cap comprises: a cap basic body having a cap floor having an opening as well as a surrounding cap lateral wall adjoining an edge of the cap floor. A window pane of a transparent material placed on a side of the cap floor facing toward the cap lateral wall in a manner sealing the opening of the cap floor; as well as a contact disk placed on a side of the window pane facing away from the cap floor. The cap lateral wall includes on an inner side facing the window pane a groove, while the contact disk has a contact region bearing against the window pane as well as an outer edge having formed therein a plurality of teeth, which are in engagement with the groove.
Type:
Grant
Filed:
November 22, 2012
Date of Patent:
February 16, 2016
Assignee:
ENDRESS + HAUSER FLOWTEC AG
Inventors:
Philipp Loeffel, Utz Dette, Sascha Kamber
Abstract: A measuring device for determining and/or monitoring a chemical and/or physical measured variable of process automation technology, wherein the measuring device includes at least one housing, and the housing has at least a first wall; which comprises a first material, and the housing has at least a second wall which comprises at least a second material. The second wall is secured to the first wall; and the outside of the first wall is at least partially surrounded by the second wall. The second wall is approximately fitted to the shape of the first wall, and the second wall is mechanically connected to the first wall.
Type:
Grant
Filed:
April 20, 2011
Date of Patent:
January 5, 2016
Assignee:
ENDRESS + HAUSER FLOWTEC AG
Inventors:
Thierry Moser, Roland Unterseh, Christian Waltenspuel
Abstract: A thermal, flow measuring device and method for measuring the flow of a measured medium. During a heating phase of predetermined length a constant heating current of a first electrical current source flows through a first resistor. During a first measuring phase of predetermined length a constant measurement current of a second electrical current source flows through the first resistor. During the first measuring phase a first voltage falls across the first resistor, wherein during a second measuring phase of predetermined length during the first measuring cycle the constant measurement current of the second electrical current source flows through a second resistor.