Patents Assigned to Flowtec AG
  • Publication number: 20150226590
    Abstract: A Coriolis mass flow measuring device comprises a measuring device electronics as well as, connected thereto, a measuring transducer comprising at least one measuring tube, an oscillation exciter for oscillating the at least one measuring tube and, mutually spaced along the measuring tube, two oscillation sensors for generating oscillation signals representing oscillations of the measuring tube. The measuring tube is adapted to be flowed through by a medium and during that to be caused to vibrate in such a manner that the measuring tube executes wanted oscillations having a wanted frequency. The wanted oscillations are suitable to induce in the flowing medium, dependent on its mass flow rate, Coriolis forces suitable for bringing about a measurement effect of a first type, namely Coriolis oscillations of the wanted frequency superimposed on the wanted oscillations. These Coriolis oscillations are, in turn, suitable to induce in the medium centrifugal forces dependent on its mass flow rate and on its density.
    Type: Application
    Filed: April 10, 2014
    Publication date: August 13, 2015
    Applicant: Endress + Hauser Flowtec AG
    Inventors: Christof Huber, Vivek Kumar
  • Patent number: 9097570
    Abstract: A measuring transducer serves for producing vibration signals corresponding to parameters of a flowing medium comprises a measuring transducer housing having housing ends and, extending within the measuring transducer housing between its housing ends, a tube arrangement formed by means of at least two tubes. Of the two tubes, at least one tube serves as a measuring tube conveying flowing medium and the other tube is mechanically connected with the tube by means of a first coupling element to form an inlet-side coupling zone and by means of a second coupling element to form an outlet-side coupling zone. At least the first coupling element has in a region extending between the tubes a slit having at least one closed end. Slit has a maximal slit width and a maximal slit length, which is greater than the maximal slit width. Placed partially within the slit is a connecting element, which contacts a slit edge enclosing said slit.
    Type: Grant
    Filed: April 2, 2013
    Date of Patent: August 4, 2015
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Alfred Rieder, Hao Zhu, Ennio Bitto, Gerhard Eckert
  • Patent number: 9097567
    Abstract: An ultrasonic, flow measuring device, including a measuring tube a transmitter a receiver and at least a first reflection surface. An acoustic signal incident on a first reflection surface and an acoustic signal reflected on the first reflection surface travel, in each case, along a straight subsection of the first signal path. The transmitter, the receiver and the first reflection surface are so oriented with respect to one another and arranged in or on the measuring tube that the acoustic signal on the first signal path from the first transmitter to the first receiver is so reflected on the first reflection surface that the sum of all lengths of all subsections as projected on a measuring tube axis, extending in a first plane parallel to the measuring tube axis, and having a predetermined separation other than zero from the measuring tube axis has a predetermined value different from zero.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: August 4, 2015
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Achim Wiest, Andreas Berger, Sascha Grunwald
  • Patent number: 9068868
    Abstract: A magneto-inductive, flow measuring device for measuring flow of a measured medium through a measuring tube, comprising: at least a first coil assembly for accommodating a coil core is arranged in a first passageway. The coil core has a broadened part and a first stop, which is arranged between the measuring tube and the coil. The broadened part of the coil core in the assembled state of the first coil assembly lies against the first stop of the coil body and prevents shifting of the coil core relative to the coil body along the longitudinal axis of the coil core in a first direction facing away from the measuring tube. The coil body has a second stop, wherein the coil core is secured to the coil body with a securement element (which, in the assembled state, lies against the second stop of the coil body under a prestress along the longitudinal axis of the coil core between the first stop and the second stop of the coil body.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: June 30, 2015
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Frank Voigt, Thomas Zingg, Gunther Bähr, Werner Wohlgemuth, Alexander Crnovic
  • Publication number: 20150160052
    Abstract: A method for manufacturing an ultrasonic, flow measuring device, characterized by method steps as follows: selecting a number larger than one of straight subsections of the first signal path, which should have different distances from the measuring tube axis; establishing the distances of the straight subsections from measuring tube axis; calculating values of lengths of the straight subsections, as projected on the measuring tube axis, as a function of the number of straight subsections with the same distance from the measuring tube axis and the respective distances from the measuring tube axis; and inserting the at least a first reflection surface in the measuring tube such that the acoustic signal on the path from the first transmitter to the first receiver is so reflected on at least the first reflection surface that the first signal path comprises the straight subsections with the selected distances and the calculated values of the lengths as projected on the measuring tube axis.
    Type: Application
    Filed: April 27, 2012
    Publication date: June 11, 2015
    Applicant: Endress Hauser Flowtec AG
    Inventors: Achim Wiest, Andreas Berger
  • Patent number: 9052224
    Abstract: A measuring transducer comprises: a housing, with an inlet-side flow divider having four flow openings, and an outlet-side end having four flow openings; a tube arrangement having four tubes connected to the flow dividers; and a first coupling element. An exciter mechanism for producing and/or maintaining mechanical oscillations of the four measuring tubes. The first coupling element includes a deformation body and four connecting struts, of which connected with a first strut end and with the first measuring tube, a second connecting strut is connected with a first strut end and with a second strut end with the second measuring tube, a third connecting strut and with a second strut end with the first measuring tube, and a fourth connecting strut is connected with a first strut end and with a second strut end with the fourth measuring tube.
    Type: Grant
    Filed: December 30, 2011
    Date of Patent: June 9, 2015
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Alfred Rieder, Christof Huber, Ennio Bitto, Christian Schutze, Marcel Braun
  • Patent number: 9052221
    Abstract: A method and flow measuring device for ascertaining flow of a medium through a measuring tube based on at least a first measurement signal, which depends at least on the flow velocity of the medium in the measuring tube, wherein the first measurement signal is registered, wherein an additional, second measurement signal is registered, which depends on the flow cross sectional area of the medium in the measuring tube and is independent of the flow velocity of the medium in the measuring tube, and wherein flow is ascertained as a function of the first and second measurement signals.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: June 9, 2015
    Assignee: ENDRESS + HAUSER FLOWTEC AG
    Inventors: Wolfgang Drahm, Alfred Rieder, Stefan Heidenblut, Frank Schmalzried, Thomas Sulzer
  • Patent number: 9052225
    Abstract: A method for determining the viscosity of a medium with a Coriolis mass flowmeter having at last two measuring tubes through which a medium can flow, comprising: exciting the measuring tubes; and determining at least the viscosity of the medium by evaluation of measured values obtained from the measuring device. The measuring values comprise the amplitude of torsional oscillation reached, wherein the amplitude of torsional oscillation reached is evaluated for determining the viscosity of the medium at a set excitation intensity of the measuring device and using the damping coefficient of the medium.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: June 9, 2015
    Assignee: ENDRESS + HAUSER FLOWTEC AG
    Inventors: Martin Anklin-Imhof, Ennio Bitto, Christof Huber, Alfred Rieder, Michael Kirst
  • Patent number: 9046397
    Abstract: A for operating a thermal, flow measuring device having a first sensor having a first heatable, resistance thermometer and at least one additional, second sensor having a second heatable, resistance thermometer, wherein a decision coefficient is calculated according to the formula DC=(PC1?PC2)/PC1, wherein PC1(t=t1)=P1,1(t1)/(T1,heated;actual(t=t1)?Tmedium;actual(t=t1)) and PC2(t=t2)=P2,2(t2)/(T2,heated;actual(t=t2)?Tmedium;actual(t=t2)), with P being the heating powers absorbed by the corresponding resistance thermometers at the points in time t and the temperature values T, wherein the value of the decision coefficient shows flow direction of a measured medium in the measuring tube.
    Type: Grant
    Filed: August 17, 2010
    Date of Patent: June 2, 2015
    Assignee: Enrdress + Hauser Flowtec AG
    Inventors: Axel Pfau, Vivek Kumar, Anastasios Badarlis
  • Patent number: 9035483
    Abstract: A fieldbus unit for connection of a field device to a fieldbus comprising two conductors is designed to transfer a signal via the fieldbus by modulation of an electrical current drawn by the field device. The fieldbus unit comprises: an electrical current control transistor, through which the electrical current drawn by the field device flows, wherein the electrical current drawn by the field device is controlled via a base current of the electrical current control transistor; a bipolar transistor, via whose emitter-collector, electrical current path the base current for driving the electrical current control transistor flows; as well as an electrical current controller, which produces an electrical current control signal for controlling the electrical current drawn by the field device.
    Type: Grant
    Filed: July 10, 2008
    Date of Patent: May 19, 2015
    Assignee: ENDRESS + HAUSER FLOWTEC AG
    Inventor: Antoine Simon
  • Patent number: 9027915
    Abstract: A retractable assembly for introducing an insertable device into a container through a container opening, comprising: a linear guide, which is releasably mountable on the container via a holder; and, guided along the linear guide, a slider, on which an articulated head is so seated, that it has at least two degrees of freedom perpendicular to the linear guide, wherein the insertable device is at least axially guided in the articulated head in the mounted state.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: May 12, 2015
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Walter Kamber, Lukas Schneider
  • Publication number: 20150114133
    Abstract: A measuring tube for a flow measuring device, wherein the measuring tube has a lining, wherein the lining has at least one sealing lip, which sealing lip serves to provide a sealing action between the measuring tube and a pipeline section adjoining the measuring tube in the installed state.
    Type: Application
    Filed: March 19, 2013
    Publication date: April 30, 2015
    Applicant: Endress + Hauser Flowtec AG
    Inventors: Roger Kerrom, Beat Tschudin, Raphael Hess
  • Publication number: 20150075277
    Abstract: A method for determining mass flow of a gas by means of a mass flow meter, which has a first and a second temperature sensor, which can be flowed around by the gas. The first temperature sensor is heated with a heating power Q, wherein the mass flow of the medium is determined by means of a power coefficient PC=Q/?T as a function of a heating power Q and a temperature difference ?Tm=T1?T2 between the measured values of the temperature sensor. A corrected power coefficient PCcorr is determined, wherein at least one correction occurs by means of at least one recovery correction term Ki, wherein the recovery correction term Ki has the form Ki=?x·u2/(2·cp), wherein u is the flow velocity and cp the heat capacity of the medium, ?x is an element of the set {?1; ?2; ?12}, ?1:=e1?cr, ?2:=e2?cr and ?12:=e1?e2=?1??2, e1 and e2 are the recovery factors of the first, respectively second, temperature sensors, and wherein cr is a constant reference value, for which holds cr?1, especially cr=1.
    Type: Application
    Filed: March 19, 2013
    Publication date: March 19, 2015
    Applicant: Endress + Hauser Flowtec AG
    Inventors: Anastasios Badarlis, Tobias Baur, Axel Pfau, Hanno Schultheis
  • Patent number: 8950274
    Abstract: A method for monitoring oscillation characteristics in a Coriolis, flow measuring device and to a correspondingly formed, Coriolis, flow measuring device in the case of which an excited oscillatory system is simulated with a digital model, which has at least one fittable parameter. The simulating includes, in such case, excitating the digital model in the same manner as the oscillatory system, calculating a simulation response variable of the simulated oscillations according to the digital model, and, performed over a plurality of signal modulations, iterative conforming of the at least one, fittable parameter in such a manner that the simulation response variable interatively approaches the response variable. Furthermore, it is ascertained whether a corresponding limit value is exceeded by the at least one, interatively ascertained parameter value for the at least one, fittable parameter or by at least one variable derived from the at least one, iteratively ascertained parameter value.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: February 10, 2015
    Assignee: Endress + Hauser Flowtec AG
    Inventor: Remy Scherrer
  • Patent number: 8950273
    Abstract: Method and thermal, flow measuring device for determining at least one variable dependent on at least the chemical composition of a measured medium, wherein the measured medium has n components, wherein n is greater than or equal to two, wherein each mole fraction, volume fraction and/or mass fraction of m components of the medium is measured, wherein m is smaller than or equal to n minus one, wherein the mole fractions, volume fractions and/or mass fractions of the k components of the measured medium which are not measured, and wherein k is equal to n minus m, are established in such a manner, that the sum of the mole fractions, volume fractions and/or mass fractions of the n components amounts to one.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: February 10, 2015
    Assignee: Endress + Hauser Flowtec AG
    Inventor: Michel Wagner
  • Patent number: 8939034
    Abstract: Flow measuring device for ascertaining flow of a measured medium flowing through a measuring tube, which flow measuring device has a first housing for protruding into the measured medium, wherein the first housing has a first surface intended to face the measured medium, wherein the flow measuring device includes a second surface for bounding the measured medium, and wherein each separation between the first surface for bounding the first housing from measured medium, the second surface for bounding the measured medium and the first surface of the first housing amounts to at least 1 mm.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: January 27, 2015
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Andreas Berger, Pierre Ueberschlag
  • Patent number: 8935843
    Abstract: A thermal, flow measuring device for determining and/or monitoring the flow of a measured medium through a measuring tube. The thermal, flow measuring device includes: a first pin-shaped shell and at least a second pin-shaped shell; a first resistance thermometer and at least a second resistance thermometer. At least the first resistance thermometer is embodied so as to be heatable, wherein the resistance thermometers, in each case, have a first surface, and at least a second surface, which lies opposite the first surface. The first pin-shaped shell surrounds the first resistance thermometer, and the second pin-shaped shell surrounds the second resistance thermometer. The pin-shaped shells are fillable with a fill material. In each case, at least one spacer is placeable between the pin-shaped shell and the first surface of the resistance thermometer, and the second surface of the resistance thermometer is at least partially covered with fill material.
    Type: Grant
    Filed: July 9, 2012
    Date of Patent: January 20, 2015
    Assignee: Endress + Hauser FLowtec AG
    Inventors: Dirk Boguhn, Jiri Holoubek, Axel Pfau, Oliver Popp, Jiri Polak
  • Patent number: 8931346
    Abstract: A measuring transducer having exactly four flow openings, and an outlet-side housing end formed by means of an outlet-side flow divider having exactly four flow openings. A tube arrangement has exactly four curved or bent measuring tubes connected to the flow dividers for guiding flowing medium along flow paths connected in parallel. Each of the four measuring tubes opens with an inlet-side measuring tube end into one of the flow openings of the inlet-side flow divider, and with an outlet-side measuring tube end into one of the flow openings of the outlet-side flow divider. A first coupling element for adjusting eigenfrequencies of natural oscillation modes of the tube arrangement. An electro-mechanical exciter mechanism of the measuring transducer serves for producing and/or maintaining mechanical oscillations of the four measuring tubes.
    Type: Grant
    Filed: November 24, 2011
    Date of Patent: January 13, 2015
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Alfred Rieder, Christof Huber, Ennio Bitto, Christian Schutze, Marcel Braun
  • Patent number: 8924165
    Abstract: The measuring system has a measuring transducer which produces primary signals transmitter electronics for activating the measuring transducer and for evaluating primary signals. The measuring transducer includes at least one measuring tube; at least one electro-mechanical, oscillation exciter, a first oscillation sensor. The transmitter electronics, in turn, delivers at least one driver signal for the oscillation exciter for effecting vibrations of the at least one measuring tube and generates, by means of the first primary signal and by means of the second primary signal, as well as with application of a Reynolds number, measured value representing a Reynolds number, Re, for medium flowing in the measuring transducer, a pressure difference, measured value, which represents a pressure difference occurring between two predetermined reference points in the flowing medium.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: December 30, 2014
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Vivek Kumar, Martin Anklin
  • Patent number: RE45447
    Abstract: The flowmeter comprises a flow sensor with a flow tube, two electrodes, and two field coils traversed by a first excitation current and a second excitation current, respectively, as well as control and evaluation electronics. The method serves to generate an error signal when the uniform turbulence in the liquid to be measured is disturbed. There are four quarter cycles. During each quarter cycle, a voltage is derived from the electrodes, and from these voltages, a first and a second voltage difference and a quotient using the first and the second voltage differences are formed. The latter is determined during calibration under uniformly turbulent flow conditions, and stored. In operation, values of the quotient are continuously formed and compared with the stored quotient; in case of deviations, an alarm is triggered and/or the volumetric flow rate signal represented by the first voltage difference is corrected.
    Type: Grant
    Filed: October 21, 2005
    Date of Patent: April 7, 2015
    Assignee: Endress + Hauser Flowtec AG
    Inventor: Thomas Budmiger