Patents Assigned to FLUIDIC, INC.
  • Patent number: 9935319
    Abstract: Methods of preparing hetero ionic complexes, and ionic liquids from bisulfate salts of heteroatomic compounds using dialkylcarbonates as a primary quaternizing reactant are disclosed. Also disclosed are methods of making electrochemical cells comprising the ionic liquids, and an electrochemical cell comprising an alkaline electrolyte and a hetero ionic complex additive.
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: April 3, 2018
    Assignee: FLUIDIC, INC.
    Inventors: Cody A. Friesen, Derek Wolfe, Paul Bryan Johnson
  • Publication number: 20180073502
    Abstract: A reciprocating piston pump may include a pump chamber, a piston seal, a monolithic partially fluorinated polymer piston with a fluid engaging end, a seating end, and a longitudinal outer piston surface extending between the fluid engaging end and the seating end. The reciprocating piston pump may further include a drive assembly coupled to the seating end of the monolithic partially fluorinated polymer piston. The drive assembly operates to reciprocate the monolithic partially fluorinated polymer piston within the pump chamber between full aspirate and full dispense positions. The piston seal forms an interface between the longitudinal outer piston surface of the piston and the pump chamber. The monolithic partially fluorinated polymer piston and the drive assembly are configured such that the piston seal interfaces with the longitudinal outer piston surface over a full stroke length of the drive assembly between the full aspirate and full dispense positions.
    Type: Application
    Filed: August 31, 2017
    Publication date: March 15, 2018
    Applicant: Bio-Chem Fluidics, Inc.
    Inventors: Henry Huang, Razvan Bulugioiu, William Easterbrook
  • Patent number: 9893396
    Abstract: A process for conditioning an electrochemical cell system comprising at least two electrochemical cells comprises selecting from the fuel electrodes of the electrochemical cells groups comprising: a charged group and a reset group. The process also comprises holding the fuel electrodes within the charged group at a predetermined state of charge associated with a set concentration of metal fuel ions in solution in the ionically conductive medium. The process further comprises resetting the fuel electrodes within the reset group. An electrochemical cell system includes a plurality of fuel electrodes and one or more controllers configured to regulate the concentration of reducible metal fuel ions in solution with an ionically conductive medium by maintaining a predetermined state of charge of at least one of the fuel electrodes, and initiate a charging, discharging, or resetting process on at least one other fuel electrode. Other features and embodiments are also disclosed.
    Type: Grant
    Filed: October 13, 2014
    Date of Patent: February 13, 2018
    Assignee: FLUIDIC INC.
    Inventors: Todd Trimble, Sergey Puzhaev, Joel Hayes, Ramkumar Krishnan, Cody A. Friesen
  • Patent number: 9793586
    Abstract: Methods of preparing hetero ionic complexes, and ionic liquids from bisulfate salts of heteroatomic compounds using dialkylcarbonates as a primary quaternizing reactant are disclosed. Also disclosed are methods of making electrochemical cells comprising the ionic liquids, and an electrochemical cell comprising an alkaline electrolyte and a hetero ionic complex additive.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: October 17, 2017
    Assignee: FLUIDIC, INC.
    Inventors: Cody A. Friesen, Derek Wolfe, Paul Bryan Johnson
  • Patent number: 9768472
    Abstract: Methods of preparing hetero ionic complexes, and ionic liquids from bisulfate salts of heteroatomic compounds using dialkylcarbonates as a primary quaternizing reactant are disclosed. Also disclosed are methods of making electrochemical cells comprising the ionic liquids, and an electrochemical cell comprising an alkaline electrolyte and a hetero ionic complex additive.
    Type: Grant
    Filed: December 6, 2016
    Date of Patent: September 19, 2017
    Assignee: FLUIDIC, INC.
    Inventors: Cody A. Friesen, Derek Wolfe, Paul Bryan Johnson
  • Patent number: 9761920
    Abstract: The present invention relates to a metal-air electrochemical cell with a high energy efficiency mode.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: September 12, 2017
    Assignee: FLUIDIC, INC.
    Inventors: Cody A. Friesen, Ramkumar Krishnan, Todd Trimble, Joel Hayes
  • Publication number: 20170233877
    Abstract: Methods of preparing hetero ionic complexes, and ionic liquids from bisulfate salts of heteroatomic compounds using dialkylcarbonates as a primary quaternizing reactant are disclosed. Also disclosed are methods of making electrochemical cells comprising the ionic liquids, and an electrochemical cell comprising an alkaline electrolyte and a hetero ionic complex additive.
    Type: Application
    Filed: June 18, 2012
    Publication date: August 17, 2017
    Applicant: FLUIDIC, INC.
    Inventors: Cody A. Friesen, Derek Wolfe, Paul Bryan Johnson
  • Patent number: 9716300
    Abstract: An electrochemical cell system is configured to utilize an oxidant reduction electrode module containing an oxidant reduction electrode mounted to a housing to form a gaseous oxidant space therein that is immersed into the ionically conductive medium. A fuel electrode is spaced from the oxidant reduction electrode, such that the ionically conductive medium may conduct ions between the fuel and oxidant reduction electrodes to support electrochemical reactions at the fuel and oxidant reduction electrodes. A gaseous oxidant channel extending through the gaseous oxidant space provides a supply of oxidant to the oxidant reduction electrode, such that the fuel electrode and the oxidant reduction electrode are configured to, during discharge, oxidize the metal fuel at the fuel electrode and reduce the oxidant at the oxidant reduction electrode, to generate a discharge potential difference therebetween for application to a load.
    Type: Grant
    Filed: August 3, 2016
    Date of Patent: July 25, 2017
    Assignee: FLUIDIC, INC.
    Inventors: Cody Friesen, Ramkumar Krishnan, Michael Mihalka, Grant Friesen, Andrew Goodfellow
  • Publication number: 20170205330
    Abstract: A particle screening device is provided. The particle screening device comprises: a substrate including a first side and a second side opposite to the first side; a micropore array formed on the substrate, wherein each micropore penetrates through the substrate from the first side to the second side and has a size configured to at least permit particles smaller than target particles flow through; and electrodes formed on at least one side of the first and second sides of the substrate and around at least some micropores, wherein the electrodes are configured to generate an electric field at corresponding micropores.
    Type: Application
    Filed: June 24, 2015
    Publication date: July 20, 2017
    Applicant: Ocular Fluidics, Inc.
    Inventors: Chengjun Huang, Jun Luo, Chao Zhao
  • Patent number: 9484587
    Abstract: An electrochemical cell system and a process for operating the same, the system having at least two fuel electrodes for receiving electrodeposited metal fuel; at least one oxidant electrode spaced apart from the fuel electrode; at least one charging electrode; an ionically conductive medium communicating the electrodes of the electrochemical cell system for conducting ions to support electrochemical reactions at the fuel, oxidant, and charging electrodes; and, one or more controllers configured to operate the cell system in discharging and charging modes and monitor a state of charge for each fuel electrode. The controllers may assign each fuel electrode in a discharging unit having a state-of-charge meeting a predetermined depletion criteria from the discharging unit to the charging unit, and each fuel electrode in the charging unit having a state-of-charge meeting a predetermined loading criteria from the charging unit to the discharging unit.
    Type: Grant
    Filed: February 11, 2015
    Date of Patent: November 1, 2016
    Assignee: FLUIDIC, INC.
    Inventors: Cody A. Friesen, Joel Hayes, Sergey Puzhaev, Ramkumar Krishnan, Todd Trimble
  • Patent number: 9444105
    Abstract: An electrochemical cell system is configured to utilize an oxidant reduction electrode module containing an oxidant reduction electrode mounted to a housing to form a gaseous oxidant space therein that is immersed into the ionically conductive medium. A fuel electrode is spaced from the oxidant reduction electrode, such that the ionically conductive medium may conduct ions between the fuel and oxidant reduction electrodes to support electrochemical reactions at the fuel and oxidant reduction electrodes. A gaseous oxidant channel extending through the gaseous oxidant space provides a supply of oxidant to the oxidant reduction electrode, such that the fuel electrode and the oxidant reduction electrode are configured to, during discharge, oxidize the metal fuel at the fuel electrode and reduce the oxidant at the oxidant reduction electrode, to generate a discharge potential difference therebetween for application to a load.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: September 13, 2016
    Assignee: FLUIDIC, INC.
    Inventors: Cody A. Friesen, Ramkumar Krishnan, Michael Mihalka, Grant Friesen, Andrew Goodfellow
  • Patent number: 9413048
    Abstract: An electrochemical cell includes a housing, a fuel electrode comprising a metal fuel; an oxidant electrode spaced from the fuel electrode, having fuel electrode and oxidant facing sides, and a liquid ionically conductive medium for conducting ions between the fuel and oxidant electrodes to support electrochemical reactions thereat. The fuel and oxidant electrodes are configured to, during discharge, oxidize the metal fuel at the fuel electrode and reduce a gaseous oxidant at the oxidant electrode to generate a discharge potential difference therebetween for application to a load. The oxidant electrode includes an active layer configured to participate in the electrochemical reactions, and a current collector electrically coupled to the active layer. The oxidant electrode further includes a graphite layer comprising a mixture of graphite particles and solvophobic binder, the graphite layer providing a surface thereof for exposure to a sealant that adheres the oxidant electrode to the housing.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: August 9, 2016
    Assignee: FLUIDIC, INC.
    Inventors: Cody A. Friesen, Joel Hayes, Kent Berchin-Miller
  • Publication number: 20160138812
    Abstract: A building cladding heater apparatus comprising: a heating element; an insulation layer on one side of the heating element; an adhesive layer on one side of the heating element, on the side opposite of the insulation layer; a first bus braid located in the heating element; a second bus braid located in the heating element. A building cladding heater system comprising: a building; a building cladding forming generally the skin of the building; a first building cladding heater apparatus affixed to an inner surface of the building cladding, the building cladding heater apparatus comprising: a heating element; an insulation layer on one side of the heating element; an adhesive layer on one side of the heating element, on the side opposite of the insulation layer; a first bus braid located in the heating element; a second bus braid located in the heating element; a power source located on the interior side of the building cladding and in operable communication with the first building cladding heater apparatus.
    Type: Application
    Filed: November 14, 2014
    Publication date: May 19, 2016
    Applicant: THERMAL FLUIDICS, INC.
    Inventor: Richard Losi
  • Patent number: 9325037
    Abstract: An embodiment of the invention provides for an electrochemical cell comprising: a fuel electrode comprising a metal fuel, a second electrode, and an ionically conductive medium communicating the electrodes; the ionically conductive medium comprising hetero-ionic aromatic additives. The fuel electrode and the second electrode are operable in a discharge mode wherein the metal fuel is oxidized at the fuel electrode functioning as an anode, whereby electrons are generated for conduction from the fuel electrode to the second electrode via a load. An ionically conductive medium and methods of operating an electrochemical cell are also disclosed.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: April 26, 2016
    Assignee: FLUIDIC, INC.
    Inventors: Todd Trimble, Paul Johnson, Cody A. Friesen
  • Patent number: 9312572
    Abstract: An embodiment of the invention provides for an electrochemical cell comprising: a fuel electrode comprising a metal fuel, a second electrode, an ionically conductive medium communicating the electrodes, the ionically conductive medium comprising at least two different additives, wherein at least one additive is selected from the group consisting of: macroheterocyclic compounds, phosphonium salts, hetero-ionic compounds and their derivatives; and, at least one additive is selected from the group consisting of: macroheterocyclic compounds, phosphonium salts, hetero-ionic compounds, and their derivatives. The fuel electrode and the second electrode are operable in a discharge mode wherein the metal fuel is oxidized at the fuel electrode functioning as an anode, whereby electrons are generated for conduction from the fuel electrode to the second electrode via a load. An ionically conductive medium and methods of operating an electrochemical cell are also disclosed.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: April 12, 2016
    Assignee: FLUIDIC, INC.
    Inventors: Todd Trimble, Paul Johnson, Cody A. Friesen
  • Patent number: 9287597
    Abstract: Embodiments of the invention are related to ionic liquids and more specifically to ionic liquids used in electrochemical metal-air cells in which the ionic liquid includes a cation and an anion selected from hydroxamate and/or N-alkyl sulfamate anions.
    Type: Grant
    Filed: November 12, 2013
    Date of Patent: March 15, 2016
    Assignee: FLUIDIC, INC.
    Inventors: Cody A. Friesen, Derek Wolfe, Paul Bryan Johnson
  • Patent number: 9269998
    Abstract: The invention provides an electrochemical cell system comprising: a fuel electrode, an oxidant electrode for absorbing and reducing a gaseous oxidant, and an interior cell chamber configured to contain a volume of ionically conductive liquid therein. The ionically conductive liquid conducts ions between the fuel and oxidant electrodes. The oxidant electrode separates the ionically conductive liquid from the gaseous oxidant. A gas vent is configured to separate gas in the cell from a mist comprising the ionically conductive liquid and is positioned generally above the volume of ionically conductive liquid. The gas vent comprises a filter body portion comprised of at least one layer so as to absorb a portion of the ionically conductive liquid. The body portion is formed in a concave shape with an apex positioned towards the top of the cell in its upright orientation, and with body surfaces extending downwardly from said apex so as to drain absorbed ionically conductive medium back into the interior chamber.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: February 23, 2016
    Assignee: FLUIDIC, INC.
    Inventors: Joel Hayes, Andrew Goodfellow
  • Patent number: 9269995
    Abstract: An electrochemical cell includes a fuel electrode configured to operate as an anode to consume a fuel when the fuel electrode and an associated cathode are connected to a load. An ionically conductive medium either present or flowing through the electrochemical cell is configured to conduct ions and participate in electrochemical reactions between the anode and the cathode. The cell further includes a catch tray containing catalyst material to induce the ionization of precipitates of fuel and/or fuel additives that may separate in solid form from the fuel electrode. The catch tray may be positioned to prevent a congestion of the precipitates in the ionically conductive medium, or the waste of electrically disconnected fuel and/or additives.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: February 23, 2016
    Assignee: FLUIDIC, INC.
    Inventors: Cody A. Friesen, Ramkumar Krishnan, Grant Friesen
  • Patent number: 9269996
    Abstract: An electrochemical cell system is configured to utilize an ionically conductive liquid flowing through a plurality of electrochemical cells. One or more hydrophilic filters for venting of gas from the cells are provided along a flow path for the ionically conductive liquid, so as to permit gasses that evolve in the ionically conductive liquid during charging or discharging to vent outside the cell system, while constraining the ionically conductive liquid within the flow path of the electrochemical cell system.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: February 23, 2016
    Assignee: FLUIDIC, INC.
    Inventors: Cody A. Friesen, Ramkumar Krishnan, Grant Friesen, Joel R. Hayes
  • Patent number: 9214830
    Abstract: An electrochemical cell includes a fuel electrode configured to operate as an anode to oxidize a fuel when connected to a load. The cell also includes an oxidant electrode configured to operate as a cathode to reduce oxygen when connected to the load. The fuel electrode comprises a plurality of scaffolded electrode bodies. The present invention relates to an electrochemical cell system and method of resetting the electrochemical cell by applying a charge (i.e. voltage or current) to the cell to drive oxidation of the fuel, wherein the fuel electrode operates as an anode, and the second cell operates as a cathode, removing uneven distributions of fuel that may cause premature shorting of the electrode bodies to improve capacity, energy stored, and cell efficiency.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: December 15, 2015
    Assignee: FLUIDIC, INC.
    Inventors: Cody A. Friesen, Ramkumar Krishnan, Sergey Puzhaev, Todd Trimble