Patents Assigned to FLUIDIC, INC.
  • Patent number: 8632921
    Abstract: An electrochemical cell includes a first electrode configured to operate as an anode to oxidize a fuel when connected to a load. The first electrode includes a permeable electrode body configured to allow flow of an ionically conductive medium therethrough. An electrode holder includes a cavity for holding the first electrode. A diffuser is positioned in the cavity between the first electrode and the electrode holder with a gap formed between the diffuser and the electrode holder. The diffuser includes openings configured to allow flow of the ionically conductive medium therethrough and to distribute the flow through the first electrode. A second electrode is positioned in the cavity on a side of the first electrode that is opposite the diffuser, and is configured to operate as a cathode when connected to the load and in contact with the ionically conductive medium.
    Type: Grant
    Filed: February 2, 2011
    Date of Patent: January 21, 2014
    Assignee: Fluidic, Inc.
    Inventors: Cody A. Friesen, Grant Friesen, Ramkumar Krishnan, Todd Trimble
  • Patent number: 8491763
    Abstract: An oxygen recovery system configured to recover evolved oxygen from a regenerative electrochemical cell. The electrochemical cell includes an oxygen reduction cathode, a fuel electrode configured to be a fuel anode when the cell is operated to generate electricity and a cathode for reducing fuel thereon when the cell is operated to regenerate the fuel, and an oxygen evolution anode that is configured to evolve oxygen from an electrolyte solution when the cell is operated to regenerate the fuel. The oxygen recovery system includes an oxygen separator located downstream of the oxygen evolution anode in a recharge direction of flow. The oxygen separator is configured to separate the evolved oxygen from the electrolyte solution. An oxygen recovery path is disposed between the oxygen separator and the oxygen reduction cathode. The oxygen recovery path is configured to direct the evolved oxygen separated from the electrolyte solution to the oxygen reduction cathode.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: July 23, 2013
    Assignee: Fluidic, Inc.
    Inventor: Cody A. Friesen
  • Patent number: 8492052
    Abstract: An electrochemical cell includes a fuel electrode configured to operate as an anode to oxidize a fuel when connected to a load. An electrode holder includes a cavity for holding the fuel electrode, at least one inlet connected to the cavity on one side of the cavity and configured to supply an ionically conductive medium to the cavity, and at least one outlet connected to the cavity on an opposite side of the cavity and configured to allow the ionically conductive medium to flow out of the cavity. A plurality of spacers extend across the fuel electrode and the cavity in a spaced relation from each other to define a plurality of flow lanes in the cavity.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: July 23, 2013
    Assignee: Fluidic, Inc.
    Inventors: Cody A Friesen, Ramkumar Krishnan, Grant Friesen
  • Publication number: 20130115523
    Abstract: An electrochemical cell system is configured to utilize an oxidant reduction electrode module containing an oxidant reduction electrode mounted to a housing to form a gaseous oxidant space therein that is immersed into the ionically conductive medium. A fuel electrode is spaced from the oxidant reduction electrode, such that the ionically conductive medium may conduct ions between the fuel and oxidant reduction electrodes to support electrochemical reactions at the fuel and oxidant reduction electrodes. A gaseous oxidant channel extending through the gaseous oxidant space provides a supply of oxidant to the oxidant reduction electrode, such that the fuel electrode and the oxidant reduction electrode are configured to, during discharge, oxidize the metal fuel at the fuel electrode and reduce the oxidant at the oxidant reduction electrode, to generate a discharge potential difference therebetween for application to a load.
    Type: Application
    Filed: June 25, 2012
    Publication date: May 9, 2013
    Applicant: FLUIDIC, INC.
    Inventors: Cody A. FRIESEN, Ramkumar KRISHNAN, Michael MIHALKA, Grant FRIESEN, Andrew GOODFELLOW
  • Publication number: 20130115526
    Abstract: An electrochemical cell includes a housing, a fuel electrode comprising a metal fuel; an oxidant electrode spaced from the fuel electrode, having fuel electrode and oxidant facing sides, and a liquid ionically conductive medium for conducting ions between the fuel and oxidant electrodes to support electrochemical reactions thereat. The fuel and oxidant electrodes are configured to, during discharge, oxidize the metal fuel at the fuel electrode and reduce a gaseous oxidant at the oxidant electrode to generate a discharge potential difference therebetween for application to a load. The oxidant electrode includes an active layer configured to participate in the electrochemical reactions, and a current collector electrically coupled to the active layer. The oxidant electrode further includes a graphite layer comprising a mixture of graphite particles and solvophobic binder, the graphite layer providing a surface thereof for exposure to a sealant that adheres the oxidant electrode to the housing.
    Type: Application
    Filed: November 2, 2012
    Publication date: May 9, 2013
    Applicant: Fluidic, Inc.
    Inventors: Cody A. Friesen, Joel Hayes, Kent Berchin-Miller
  • Publication number: 20130115525
    Abstract: An oxidant electrode for an electrochemical cell utilizing a fuel electrode comprising a metal fuel and a liquid ionically conductive medium configured to conduct ions between the fuel electrode and the oxidant electrode to support electrochemical reactions at the fuel and oxidant electrodes, includes an active layer configured to participate in electrochemical reactions with the fuel electrode. The oxidant electrode also includes a solvophobic layer between an oxidant-facing side of the oxidant electrode, and the active layer. The solvophobic layer is configured to prevent permeation of the liquid ionically conductive medium therethrough, but permit permeation of a gaseous oxidant therethrough. The oxidant electrode further includes a reinforcement layer at the oxidant-facing side, configured to prevent a distortion of the solvophobic layer therethrough, towards the oxidant-facing side. The reinforcement layer is permeable to the gaseous oxidant.
    Type: Application
    Filed: November 2, 2012
    Publication date: May 9, 2013
    Applicant: Fluidic, Inc.
    Inventors: Cody A. Friensen, Joel Hayes, Kent Berchin-Miller
  • Publication number: 20130115533
    Abstract: An electrochemical cell system is configured to utilize an ionically conductive liquid flowing through a plurality of electrochemical cells. One or more hydrophilic filters for venting of gas from the cells are provided along a flow path for the ionically conductive liquid, so as to permit gasses that evolve in the ionically conductive liquid during charging or discharging to vent outside the cell system, while constraining the ionically conductive liquid within the flow path of the electrochemical cell system.
    Type: Application
    Filed: November 1, 2012
    Publication date: May 9, 2013
    Applicant: Fluidic, Inc.
    Inventor: Fluidic, Inc.
  • Publication number: 20130115532
    Abstract: An electrochemical cell includes a permeable fuel electrode configured to support a metal fuel thereon, and an oxidant reduction electrode spaced from the fuel electrode. An ionically conductive medium is provided for conducting ions between the fuel and oxidant reduction electrodes, to support electrochemical reactions at the fuel and oxidant reduction electrodes. A charging electrode is also included, selected from the group consisting of (a) the oxidant reduction electrode, (b) a separate charging electrode spaced from the fuel and oxidant reduction electrodes, and (c) a portion of the permeable fuel electrode. The charging electrode is configured to evolve gaseous oxygen bubbles that generate a flow of the ionically conductive medium. One or more flow diverters are also provided in the electrochemical cell, and configured to direct the flow of the ionically conductive medium at least partially through the permeable fuel electrode.
    Type: Application
    Filed: June 25, 2012
    Publication date: May 9, 2013
    Applicant: Fluidic, Inc.
    Inventors: Cody A FRIESEN, Ramkumar KRISHNAN, Grant FRIESEN, Joel HAYES
  • Publication number: 20130095393
    Abstract: An electrochemical cell system is configured to utilize an ionically conductive medium flowing through a plurality of electrochemical cells. One or more gas vents are provided along a flow path for the ionically conductive medium, so as to permit gasses that evolve in the ionically conductive medium during charging or discharging to vent outside the cell system, while constraining the ionically conductive medium within the flow path of the electrochemical cell system.
    Type: Application
    Filed: August 3, 2012
    Publication date: April 18, 2013
    Applicant: FLUIDIC, INC.
    Inventors: Cody A FRIESEN, Ramkumar KRISHNAN, Grant FRIESEN, Todd TRIMBLE, Michael MIHALKA, Andrew GOODFELLOW
  • Publication number: 20130022881
    Abstract: The present application relates to a layer of an oxidant electrode having hygrophobic and current collecting properties, and electrochemical metal-air cell utilizing the same.
    Type: Application
    Filed: July 19, 2012
    Publication date: January 24, 2013
    Applicant: FLUIDIC, INC.
    Inventors: Cody A. FRIESEN, Joel Hayes
  • Publication number: 20120321967
    Abstract: Embodiments are related to ionic liquids and more specifically to ionic liquids used in electrochemical metal-air cells in which the ionic liquid includes sulfonate ions as the anion.
    Type: Application
    Filed: April 17, 2012
    Publication date: December 20, 2012
    Applicant: FLUIDIC, INC.
    Inventors: Derek WOLFE, Cody A. FRIESEN, Paul Bryan JOHNSON
  • Publication number: 20120321969
    Abstract: Methods of preparing hetero ionic complexes, and ionic liquids from bisulfate salts of heteroatomic compounds using dialkylcarbonates as a primary quaternizing reactant are disclosed. Also disclosed are methods of making electrochemical cells comprising the ionic liquids, and an electrochemical cell comprising an alkaline electrolyte and a hetero ionic complex additive.
    Type: Application
    Filed: June 18, 2012
    Publication date: December 20, 2012
    Applicant: FLUIDIC, INC.
    Inventors: Cody A. Friesen, Derek Wolfe, Paul Bryan Johnson
  • Publication number: 20120321970
    Abstract: Embodiments of the invention are related to anion exchange membranes used in electrochemical metal-air cells in which the membranes function as the electrolyte material, or are used in conjunction with electrolytes such as ionic liquid electrolytes.
    Type: Application
    Filed: June 18, 2012
    Publication date: December 20, 2012
    Applicant: FLUIDIC, INC.
    Inventors: Cody A. Friesen, Derek WOLFE, Paul Bryan JOHNSON
  • Publication number: 20120323004
    Abstract: Methods of preparing sulfate salts of heteroatomic compounds using dialkyl sulfates as a primary reactant are disclosed. Also disclosed are methods of making ionic liquids from the sulfate salts of the heteroatomic compound, and electrochemical cells comprising the ionic liquids.
    Type: Application
    Filed: June 18, 2012
    Publication date: December 20, 2012
    Applicant: FLUIDIC, INC.
    Inventors: Cody A. FRIESEN, Derek WOLFE, Paul Bryan JOHNSON
  • Publication number: 20120202127
    Abstract: An electrochemical cell system is configured to utilize an ionically conductive medium flowing through a plurality of electrochemical cells. One or more disperser chambers are provided to disrupt or minimize electrical current flowing between the electrochemical cells, such as between the cathode of one cell and the anode of a subsequent cell by dispersing the ionically conductive medium. Air is introduced into the disperser chamber to prevent the formation of foamed ionically conductive medium, which may reconnect the dispersed ionically conductive medium, allowing the current to again flow therethrough.
    Type: Application
    Filed: January 31, 2012
    Publication date: August 9, 2012
    Applicant: Fluidic, Inc.
    Inventors: Cody A. Friesen, Ramkumar Krishnan, Michael John Mihalka, Joel R. Hayes, Grant Friesen
  • Publication number: 20120139496
    Abstract: One aspect of the present invention provides an electrochemical cell system comprising at least one electrochemical cell configured to be connected to a power supply to recharge the cell. The electrochemical cell system comprises a plurality of electrodes and electrode bodies therein. The electrochemical cell system further comprises a switching system configured to permit modifications of the configuration of anodes and cathodes during charging of the electrochemical cell, and a controller configured to control the switching system.
    Type: Application
    Filed: November 17, 2011
    Publication date: June 7, 2012
    Applicant: Fluidic, Inc.
    Inventors: Ramkumar KRISHNAN, Cody A. Friesen
  • Publication number: 20120121992
    Abstract: A rechargeable cell includes an air electrode for absorbing and reducing oxygen to a reduced oxygen species during discharge and oxidizing the reduced oxygen species during recharge to evolve oxygen. An outer surface of the air electrode is permeable to oxygen and water. A fuel electrode of the cell includes a metal fuel that it oxidizes during discharge and reduces during recharge. First and second ionically conductive layers of the cell have an interface therebetween. The first layer is between an inner surface of the air electrode and the interface. The second layer is an ionic liquid between an inner surface of the fuel electrode and the interface. The first layer is hygroscopic and the ionic liquid is hydrophobic so water absorbed through the air electrode is essentially prevented from diffusing across the interface into the ionic liquid.
    Type: Application
    Filed: September 9, 2011
    Publication date: May 17, 2012
    Applicant: Fluidic, Inc.
    Inventors: Cody A. FRIESEN, Ramkumar Krishnan
  • Publication number: 20120098499
    Abstract: An electrochemical cell includes a fuel electrode configured to operate as an anode to oxidize a fuel when connected to a load. The cell also includes an oxidant electrode configured to operate as a cathode to reduce oxygen when connected to the load. The fuel electrode comprises a plurality of scaffolded electrode bodies. The present invention relates to an electrochemical cell system and method of resetting the electrochemical cell by applying a charge (i.e. voltage or current) to the cell to drive oxidation of the fuel, wherein the fuel electrode operates as an anode, and the second cell operates as a cathode, removing uneven distributions of fuel that may cause premature shorting of the electrode bodies to improve capacity, energy stored, and cell efficiency.
    Type: Application
    Filed: October 19, 2011
    Publication date: April 26, 2012
    Applicant: FLUIDIC, INC.
    Inventors: Cody A. FRIESEN, Ramkumar KRISHNAN, Sergey PUZHAEV, Todd TRIMBLE
  • Publication number: 20120068667
    Abstract: One aspect of the present invention provides an electrochemical cell system comprising at least one electrochemical cell configured to be selectively connected to a load to discharge the cell by generating electrical current using a fuel and an oxidant. The electrochemical cell system may alternatively be connected to a power supply to recharge the cell. The electrochemical cell system comprises a plurality of electrodes and electrode bodies therein. The electrochemical cell system further comprises a switching system configured to permit progressive movement of the anodes used for charging each electrochemical cell, maintaining a minimum distance from a progressively moving cathode that is the site of fuel growth.
    Type: Application
    Filed: September 12, 2011
    Publication date: March 22, 2012
    Applicant: Fluidic, Inc.
    Inventors: Cody A. FRIESEN, Ramkumar KRISHNAN, Todd TRIMBLE, Sergey PUZHAEV
  • Publication number: 20120052404
    Abstract: The present invention relates to an electrochemical cell for generating electrical power that includes an anode, a cathode, a charging electrode and an ionically conductive medium containing at least metal fuel ions and an additive for enhancing at least one electrochemical reaction in the cell. The cell also includes an additive sorbent material in contact with the ionically conductive medium that contains an excess amount of the additive, the sorbent material configured to release the excess additive to the ionically conductive medium as concentration of the additive in the ionically conductive medium is reduced during operation of the cell.
    Type: Application
    Filed: August 29, 2011
    Publication date: March 1, 2012
    Applicant: Fluidic, Inc.
    Inventors: Cody A. FRIESEN, Ramkumar KRISHNAN, Todd TRIMBLE, Sergey PUZHAEV