Patents Assigned to Fluidigm Corporation
  • Publication number: 20140193896
    Abstract: New high density microfluidic devices and methods provide precise metering of fluid volumes and efficient mixing of the metered volumes. A first solution is introduced into a segment of a flow channel in fluidic communication with a reaction chamber. A second solution is flowed through the segment so that the first solution is displaced into the reaction chamber, and a volume of the second solution enters the chamber. The chamber can then be isolated and reactions within the chamber can be initiated and/or detected. High throughput methods of genetic analysis can be carried out with greater accuracy than previously available.
    Type: Application
    Filed: November 4, 2013
    Publication date: July 10, 2014
    Applicant: Fluidigm Corporation
    Inventors: David S. Cohen, Jing Wang, Andrew May, Robert C. Jones, Hany Nassef
  • Publication number: 20140193812
    Abstract: The present invention provides methods for analysis of genomic DNA and/or RNA from small samples or even single cells. Methods for analyzing genomic DNA can entail whole genome amplification (WGA), followed by preamplification and amplification of selected target nucleic acids. Methods for analyzing RNA can entail reverse transcription of the desired RNA, followed by preamplification and amplification of selected target nucleic acids.
    Type: Application
    Filed: December 10, 2013
    Publication date: July 10, 2014
    Applicant: FLUIDIGM CORPORATION
    Inventors: Amy Hamilton, Min Lin, Alain Mir, Martin Pieprzyk
  • Publication number: 20140154679
    Abstract: The present invention provides for determining relative copy number difference for one or more target nucleic acid sequences between a test sample and a reference sample or reference value derived therefrom. The methods facilitate the detection of copy number differences less than 1.5-fold.
    Type: Application
    Filed: April 24, 2013
    Publication date: June 5, 2014
    Applicant: FLUIDIGM CORPORATION
    Inventor: Fluidigm Corporation
  • Publication number: 20140133732
    Abstract: A method of processing data associated with fluorescent emissions from a microfluidic device. The method includes performing an auto-focus process associated with a first image of the microfluidic device and performing an auto-exposure process associated with the first image of the microfluidic device. The method also includes capturing a plurality of images of the microfluidic device. The plurality of images are associated with a plurality of thermal cycles. The method further includes performing image analysis of the plurality of captured images to determine a series of optical intensities and performing data analysis of the series of optical intensities to provide a series of change in threshold values.
    Type: Application
    Filed: November 4, 2013
    Publication date: May 15, 2014
    Applicant: Fluidigm Corporation
    Inventors: Simant Dube, Gang Sun, Lian-She Zhao
  • Publication number: 20140130920
    Abstract: A microfabricated fluidic unidirectional valve includes a microfabricated elastomer material having a flow through channel. The microfabricated fluidic unidirectional valve also includes an elastomer flap attached to the elastomer material in the flow through channel. The elastomer flap forms a seal in the flow through channel to prevent fluid from flowing in a first direction through the flow through channel and to allow fluid flow in a second direction through the flow through channel.
    Type: Application
    Filed: November 5, 2013
    Publication date: May 15, 2014
    Applicant: Fluidigm Corporation
    Inventors: David Fernandes, Hou-Pu Chou, Marc A. Unger
  • Patent number: 8721968
    Abstract: An apparatus for imaging one or more selected fluorescence indications from a microfluidic device. The apparatus includes an imaging path coupled to least one chamber in at least one microfluidic device. The imaging path provides for transmission of one or more fluorescent emission signals derived from one or more samples in the at least one chamber of the at least one microfluidic device. The chamber has a chamber size, the chamber size being characterized by an actual spatial dimension normal to the imaging path. The apparatus also includes an optical lens system coupled to the imaging path. The optical lens system is adapted to transmit the one or more fluorescent signals associated with the chamber.
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: May 13, 2014
    Assignee: Fluidigm Corporation
    Inventors: Marc A. Unger, Geoffrey Richard Facer, Barry Clerkson, Christopher G. Cesar, Neil Switz
  • Patent number: 8697363
    Abstract: The present invention provides assay methods that increase the number of samples and/or target nucleic acids that can be analyzed in a single assay. In certain embodiments, an assay method entails separately subjecting S samples to an encoding reaction that produces a set of T tagged target nucleotide sequences, each tagged target nucleotide sequence including a sample-specific nucleotide tag and a target nucleotide sequence. In some embodiments, an assay method entails separately subjecting S samples to an encoding reaction that produces a set of T tagged target nucleotide sequences, each tagged target nucleotide sequence including a first nucleotide tag linked to a target nucleotide sequence, which is linked to a second nucleotide tag. In either case, the tagged target nucleotide sequences from the S samples can be mixed to form an assay mixture and subsequently assayed.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: April 15, 2014
    Assignee: Fluidigm Corporation
    Inventors: Alain Mir, Ramesh Ramakrishnan, Marc Unger, Bernhard G. Zimmermann
  • Patent number: 8691509
    Abstract: In certain embodiments, the invention provides amplification methods in which nucleotide tag(s) and a barcode nucleotide sequence are added to target nucleotide sequences. In other embodiments, the present invention provides a microfluidic device that includes a plurality of first input lines and a plurality of second input lines. The microfluidic device also includes a plurality of sets of first chambers and a plurality of sets of second chambers. Each set of first chambers is in fluid communication with one of the plurality of first input lines. Each set of second chambers is in fluid communication with one of the plurality of second input lines. The microfluidic device further includes a plurality of first pump elements in fluid communication with a first portion of the plurality of second input lines and a plurality of second pump elements in fluid communication with a second portion of the plurality of second input lines.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: April 8, 2014
    Assignee: Fluidigm Corporation
    Inventors: Andrew May, Peilin Chen, Jun Wang, Fiona Kaper, Megan Anderson
  • Patent number: 8685326
    Abstract: An apparatus for imaging one or more selected fluorescence indications from a microfluidic device. The apparatus includes an imaging path coupled to least one chamber in at least one microfluidic device. The imaging path provides for transmission of one or more fluorescent emission signals derived from one or more samples in the at least one chamber of the at least one microfluidic device. The chamber has a chamber size, the chamber size being characterized by an actual spatial dimension normal to the imaging path. The apparatus also includes an optical lens system coupled to the imaging path. The optical lens system is adapted to transmit the one or more fluorescent signals associated with the chamber.
    Type: Grant
    Filed: July 9, 2013
    Date of Patent: April 1, 2014
    Assignee: Fluidigm Corporation
    Inventors: Marc A. Unger, Geoffrey Richard Facer, Barry Clerkson, Christopher G. Cesar, Neil Switz
  • Publication number: 20140087973
    Abstract: An injection molding method of fabricating a carrier for holding a microfluidic device can form all of the desired features of such a carrier, including wells, channels and ports having smaller dimensions and greater density than previously achieved, while reducing or avoiding fracturing and the need for drilling the substrate to form certain features, in particular the ports. The carrier includes a substrate with a plurality of wells, each well defining a volume of between 0.1 ?l and 100 ?l; a plurality of channels within the substrate wherein each well is in fluid communication with at least one of the plurality of channels; a plurality of ports within the carrier substrate wherein each port is for coupling with regions in the carrier substrate adapted to receive fluids or pressure; and a receiving portion for receiving a microfluidic device and placing the microfluidic device in fluid communication with the plurality of wells.
    Type: Application
    Filed: September 17, 2013
    Publication date: March 27, 2014
    Applicant: Fluidigm Corporation
    Inventor: Yusuf D. Amin
  • Patent number: 8658418
    Abstract: The invention provides systems, including apparatus, methods, and kits, for the microfluidic manipulation and/or detection of particles, such as cells and/or beads. The invention provides systems, including apparatus, methods, and kits, for the microfluidic manipulation and/or analysis of particles, such as cells, viruses, organelles, beads, and/or vesicles. The invention also provides microfluidic mechanisms for carrying out these manipulations and analysis. These mechanisms may enable controlled input, movement/positioning, retention/localization, treatment, measurement, release, and/or output of particles. Furthermore, these mechanisms may be combined in any suitable order and/or employed for any suitable number of times within a system.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: February 25, 2014
    Assignee: Fluidigm Corporation
    Inventor: Antoine Daridon
  • Publication number: 20140045184
    Abstract: Embodiments of the present invention provide improved microfluidic devices and related apparatus, systems, and methods. Methods are provided for reducing mixing times during use of microfluidic devices. Microfluidic devices and related methods of manufacturing are provided with increased manufacturing yield rates. Improved apparatus and related systems are provided for supplying controlled pressure to microfluidic devices. Methods and related microfluidic devices are provided for reducing dehydration of microfluidic devices during use. Microfluidic devices and related methods are provided with improved sample to reagent mixture ratio control. Microfluidic devices and systems are provided with improved resistance to compression fixture pressure induced failures. Methods and systems for conducting temperature controlled reactions using microfluidic devices are provided that reduce condensation levels within the microfluidic device.
    Type: Application
    Filed: March 4, 2013
    Publication date: February 13, 2014
    Applicant: Fluidigm Corporation
    Inventors: Martin Pieprzyk, Geoff Facer, Timothy Woudenberg, Brian Fowler
  • Publication number: 20140045729
    Abstract: An SBS-formatted microfluidic device where the geometry of the plate defines an array of interrogation areas, and where each interrogation area encompasses at least one reaction site.
    Type: Application
    Filed: April 16, 2013
    Publication date: February 13, 2014
    Applicant: Fluidigm Corporation
    Inventor: Fluidigm Corporation
  • Publication number: 20140024559
    Abstract: An apparatus for imaging one or more selected fluorescence indications from a microfluidic device. The apparatus includes an imaging path coupled to least one chamber in at least one microfluidic device. The imaging path provides for transmission of one or more fluorescent emission signals derived from one or more samples in the at least one chamber of the at least one microfluidic device. The chamber has a chamber size, the chamber size being characterized by an actual spatial dimension normal to the imaging path. The apparatus also includes an optical lens system coupled to the imaging path. The optical lens system is adapted to transmit the one or more fluorescent signals associated with the chamber.
    Type: Application
    Filed: September 19, 2013
    Publication date: January 23, 2014
    Applicant: Fluidigm Corporation
    Inventors: Marc A. Unger, Geoffrey Richard Facer, Barry Clerkson, Christopher G. Cesar, Neil Switz
  • Patent number: 8628923
    Abstract: The present invention provides methods for analysis of genomic DNA and/or RNA from small samples or even single cells. Methods for analyzing genomic DNA can entail whole genome amplification (WGA), followed by preamplification and amplification of selected target nucleic acids. Methods for analyzing RNA can entail reverse transcription of the desired RNA, followed by preamplification and amplification of selected target nucleic acids.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: January 14, 2014
    Assignee: Fluidigm Corporation
    Inventors: Amy Hamilton, Min Lin, Alain Mir, Martin Pieprzyk
  • Patent number: 8617488
    Abstract: Microfluidic devices are described that include a rigid base layer, and an elastomeric layer on the base layer. The elastomeric layer may include at least part of a fluid channel for transporting a liquid reagent, and a vent channel that accepts gas diffusing through the elastomeric layer from the flow channel and vents it out of the elastomeric layer. The devices may also include a mixing chamber fluidly connected to the fluid channel, and a control channel overlapping with a deflectable membrane that defines a portion of the flow channel, where the control channel may be operable to change a rate at which the liquid reagent flows through the fluid channel. The devices may further include a rigid plastic layer on the elastomeric layer.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: December 31, 2013
    Assignee: Fluidigm Corporation
    Inventors: Tim Woudenberg, Jing Wang, Hou-Pu Chou
  • Patent number: 8616227
    Abstract: Multilevel microfluidic devices include a control line that can simultaneously actuate valves for both sample and reagent lines. Microfluidic devices are configured to contain a first reagent in a first chamber and a second reagent in a second chamber, where either or both of the first and second reagents are contained at a desired or selected pressure. Operation of a microfluidic device includes transmitting second reagent from the second chamber to the first chamber, for mixing or contact with the first reagent. Microfluidic device features such as channels, valves, chambers, can be at least partially contained, embedded, or formed by or within one or more layers or levels of an elastomeric block.
    Type: Grant
    Filed: June 3, 2013
    Date of Patent: December 31, 2013
    Assignee: Fluidigm Corporation
    Inventors: Geoffrey Facer, Brian Fowler, Emerson Cheung Quan, Marc Unger
  • Publication number: 20130337457
    Abstract: Multilevel microfluidic devices include a control line that can simultaneously actuate valves for both sample and reagent lines. Microfluidic devices are configured to contain a first reagent in a first chamber and a second reagent in a second chamber, where either or both of the first and second reagents are contained at a desired or selected pressure. Operation of a microfluidic device includes transmitting second reagent from the second chamber to the first chamber, for mixing or contact with the first reagent. Microfluidic device features such as channels, valves, chambers, can be at least partially contained, embedded, or formed by or within one or more layers or levels of an elastomeric block.
    Type: Application
    Filed: June 3, 2013
    Publication date: December 19, 2013
    Applicant: Fluidigm Corporation
    Inventors: Geoffrey Facer, Brian Fowler, Emerson Cheung Quan, Marc Unger
  • Publication number: 20130323732
    Abstract: In certain embodiments, the invention provides methods and devices for assaying single particles in a population of particles, wherein at least two parameters are measured for each particle. One or more parameters can be measured while the particles are in the separate reaction volumes. Alternatively or in addition, one or more parameters can be measured in a later analytic step, e.g., where reactions are carried out in the separate reaction volumes and the reaction products are recovered and analyzed. In particular embodiments, one or more parameter measurements are carried out “in parallel,” i.e., essentially simultaneously in the separate reaction volumes.
    Type: Application
    Filed: May 21, 2013
    Publication date: December 5, 2013
    Applicant: Fluidigm Corporation
    Inventors: Megan Anderson, Peilin Chen, Brian Fowler, Fiona Kaper, Ronald Lebofsky, Andrew May
  • Patent number: 8600168
    Abstract: A method of processing data associated with fluorescent emissions from a microfluidic device. The method includes performing an auto-focus process associated with a first image of the microfluidic device and performing an auto-exposure process associated with the first image of the microfluidic device. The method also includes capturing a plurality of images of the microfluidic device. The plurality of images are associated with a plurality of thermal cycles. The method further includes performing image analysis of the plurality of captured images to determine a series of optical intensities and performing data analysis of the series of optical intensities to provide a series of change in threshold values.
    Type: Grant
    Filed: October 5, 2011
    Date of Patent: December 3, 2013
    Assignee: Fluidigm Corporation
    Inventors: Simant Dube, Gang Sun, Lian-She Zhao