Patents Assigned to Fluidigm Corporation
  • Publication number: 20120035080
    Abstract: An apparatus for imaging one or more selected fluorescence indications from a microfluidic device. The apparatus includes an imaging path coupled to least one chamber in at least one microfluidic device. The imaging path provides for transmission of one or more fluorescent emission signals derived from one or more samples in the at least one chamber of the at least one microfluidic device. The chamber has a chamber size, the chamber size being characterized by an actual spatial dimension normal to the imaging path. The apparatus also includes an optical lens system coupled to the imaging path. The optical lens system is adapted to transmit the one or more fluorescent signals associated with the chamber.
    Type: Application
    Filed: February 9, 2011
    Publication date: February 9, 2012
    Applicant: Fluidigm Corporation
    Inventors: Marc A. Unger, Geoffrey Richard Facer, Barry Clerkson, Christopher G. Cesar, Neil Switz
  • Patent number: 8105550
    Abstract: A biological substrate, e.g., microfluidic chip. The substrate includes a rigid substrate material, which has a surface region capable of acting as a handle substrate. The substrate also has a deformable fluid layer coupled to the surface region. One or more well regions are formed in a first portion of the deformable fluid layer and are capable of holding a fluid therein. The one or more channel regions are formed in a second portion of the deformable fluid layer and are coupled to one or more of the well regions. An active region is formed in the deformable fluid layer. At least three fiducial markings are formed within the non-active region and disposed in a spatial manner associated with at least one of the well regions. A control layer is coupled to the fluid layer.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: January 31, 2012
    Assignee: Fluidigm Corporation
    Inventors: Emerson Chueng Quan, Colin Jon Taylor, Michael Lee, Christopher G. Cesar, Greg Harris, Gang Sun
  • Patent number: 8105553
    Abstract: The present invention provides for microfluidic devices and methods for their use. The invention further provides for apparatus and systems for using the microfluidic devices, analyze reactions carried out in the microfluidic devices, and systems to generate, store, organize, and analyze data generated from using the microfluidic devices. The invention further provides methods of using and making microfluidic systems and devices which, in some embodiments, are useful for crystal formation. In one embodiment, an apparatus includes a platen having a platen face with one or more fluid ports therein. The fluid ports spatially correspond to one or more wells on a surface of the microfluidic device.
    Type: Grant
    Filed: January 25, 2005
    Date of Patent: January 31, 2012
    Assignee: Fluidigm Corporation
    Inventors: Robert Grossman, Marc Unger, Phillip Lam, Hou-Pu Chou, Jake Kimball, Martin Pieprzyk
  • Patent number: 8104514
    Abstract: A microfabricated fluidic unidirectional valve includes a microfabricated elastomer material having a flow through channel. The microfabricated fluidic unidirectional valve also includes an elastomer flap attached to the elastomer material in the flow through channel. The elastomer flap forms a seal in the flow through channel to prevent fluid from flowing in a first direction through the flow through channel and to allow fluid flow in a second direction through the flow through channel.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: January 31, 2012
    Assignee: Fluidigm Corporation
    Inventors: David Fernandes, Hou-Pu Chou, Marc A. Unger
  • Patent number: 8105824
    Abstract: Methods and systems are provided for conducting a reaction at a selected temperature or range of temperatures over time. An array device is provided. The array device contains separate reaction chambers and is formed as an elastomeric block from multiple layers. At least one layer has at least one recess that recess has at least one deflectable membrane integral to the layer with the recess. The array device has a thermal transfer device proximal to at least one of the reaction chambers. The thermal transfer device is formed to contact a thermal control source. Reagents for carrying out a desired reaction are introduced into the array device. The array device is contacted with a thermal control device such that the thermal control device is in thermal communication with the thermal control source so that a temperature of the reaction in at least one of the reaction chamber is changed as a result of a change in temperature of the thermal control source.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: January 31, 2012
    Assignee: Fluidigm Corporation
    Inventors: Geoffrey Facer, Robert Grossman, Marc Unger, Phillip Lam, Hou-Pu Chou, Jake Kimball, Martin Pieprzyk, Antoine Daridon
  • Publication number: 20120021523
    Abstract: An integrated fluidic circuit includes a substrate layer and a first structure coupled to the substrate layer and including a plurality of channels. The first structure is configured to provide for flow of one or more materials through the plurality of channels. The integrated fluidic circuit also includes a second structure coupled to the substrate layer. The second structure includes a plurality of control channels configured to receive an actuation pressure. The integrated fluidic circuit is characterized by a thickness of less than 1.5 mm.
    Type: Application
    Filed: June 24, 2011
    Publication date: January 26, 2012
    Applicant: Fluidigm Corporation
    Inventors: Brian Fowler, Andrew May
  • Patent number: 8058630
    Abstract: Embodiments of the present invention provide improved microfluidic devices and related apparatus, systems, and methods. Methods are provided for reducing mixing times during use of microfluidic devices. Microfluidic devices and related methods of manufacturing are provided with increased manufacturing yield rates. Improved apparatus and related systems are provided for supplying controlled pressure to microfluidic devices. Methods and related microfluidic devices are provided for reducing dehydration of microfluidic devices during use. Microfluidic devices and related methods are provided with improved sample to reagent mixture ratio control. Microfluidic devices and systems are provided with improved resistance to compression fixture pressure induced failures. Methods and systems for conducting temperature controlled reactions using microfluidic devices are provided that reduce condensation levels within the microfluidic device.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: November 15, 2011
    Assignee: Fluidigm Corporation
    Inventors: Martin Pieprzyk, Geoff Facer, Timothy Woudenberg, Brian Fowler
  • Patent number: 8055034
    Abstract: A method of processing data associated with fluorescent emissions from a microfluidic device. The method includes performing an auto-focus process associated with a first image of the microfluidic device and performing an auto-exposure process associated with the first image of the microfluidic device. The method also includes capturing a plurality of images of the microfluidic device. The plurality of images are associated with a plurality of thermal cycles. The method further includes performing image analysis of the plurality of captured images to determine a series of optical intensities and performing data analysis of the series of optical intensities to provide a series of change in threshold values.
    Type: Grant
    Filed: September 13, 2007
    Date of Patent: November 8, 2011
    Assignee: Fluidigm Corporation
    Inventors: Simant Dube, Gang Sun, Lian-She Zhao
  • Publication number: 20110265304
    Abstract: Methods and systems are provided for conducting a reaction at a selected temperature or range of temperatures over time. An array device is provided. The array device contains separate reaction chambers and is formed as an elastomeric block from multiple layers. At least one layer has at least one recess that recess has at least one deflectable membrane integral to the layer with the recess. The array device has a thermal transfer device proximal to at least one of the reaction chambers. The thermal transfer device is formed to contact a thermal control source. Reagents for carrying out a desired reaction are introduced into the array device. The array device is contacted with a thermal control device such that the thermal control device is in thermal communication with the thermal control source so that a temperature of the reaction in at least one of the reaction chamber is changed as a result of a change in temperature of the thermal control source.
    Type: Application
    Filed: January 10, 2011
    Publication date: November 3, 2011
    Applicant: Fluidigm Corporation
    Inventors: Geoffrey Facer, Robert Grossman, Marc Unger, Phillip Lam, Hou-Pu Chou, Jake Kimball, Martin Pieprzyk, Antoine Daridon
  • Patent number: 8048378
    Abstract: An apparatus for imaging one or more selected fluorescence indications from a microfluidic device. The apparatus includes an imaging path coupled to least one chamber in at least one microfluidic device. The imaging path provides for transmission of one or more fluorescent emission signals derived from one or more samples in the at least one chamber of the at least one microfluidic device. The chamber has a chamber size, the chamber size being characterized by an actual spatial dimension normal to the imaging path. The apparatus also includes an optical lens system coupled to the imaging path. The optical lens system is adapted to transmit the one or more fluorescent signals associated with the chamber.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: November 1, 2011
    Assignee: Fluidigm Corporation
    Inventors: Marc A. Unger, Geoffrey Richard Facer, Barry Clerkson, Christopher G. Cesar, Neil Switz
  • Patent number: 8050516
    Abstract: A method of determining a plurality of positions associated with a plurality of reaction chambers of a microfluidic device includes a) providing a baseline image; b) providing a template image of a reaction chamber; and c) selecting a region of the baseline image. The method also includes d) performing a matching process including matching the template image to one or more portions of the region of the baseline image; e) determining a position of a first chamber; and f) predicting a position of a second chamber. The method further includes g) repeating steps c) through f) for subsequent chambers.
    Type: Grant
    Filed: September 13, 2007
    Date of Patent: November 1, 2011
    Assignee: Fluidigm Corporation
    Inventors: Simant Dube, Gang Sun, Lian-She Zhao
  • Patent number: 8007746
    Abstract: An M.times.N matrix microfluidic device for performing a matrix of reactions, the device having a plurality of reaction cells in communication with one of either a sample inlet or a reagent inlet through a via formed within an elastomeric block of the device. Methods provided include a method for forming vias in parallel in an elastomeric layer of an elastomeric block of a microfluidic device, the method comprising using patterned photoresist masks and etching reagents to etch away regions or portions of an elastomeric layer of the elastomeric block.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: August 30, 2011
    Assignee: Fluidigm Corporation
    Inventors: Marc Unger, Jiang Huang, Emerson Quan
  • Publication number: 20110206576
    Abstract: Microfluidic devices are described that include a rigid base layer, and an elastomeric layer on the base layer. The elastomeric layer may include at least part of a fluid channel for transporting a liquid reagent, and a vent channel that accepts gas diffusing through the elastomeric layer from the flow channel and vents it out of the elastomeric layer. The devices may also include a mixing chamber fluidly connected to the fluid channel, and a control channel overlapping with a deflectable membrane that defines a portion of the flow channel, where the control channel may be operable to change a rate at which the liquid reagent flows through the fluid channel. The devices may further include a rigid plastic layer on the elastomeric layer.
    Type: Application
    Filed: August 4, 2009
    Publication date: August 25, 2011
    Applicant: FLUIDIGM CORPORATION
    Inventors: Tim Woudenberg, Jing Wang, Hou-Pu Chou
  • Publication number: 20110189678
    Abstract: A variety of elastomeric-based microfluidic devices and methods for using and manufacturing such devices are provided. Certain of the devices have arrays of reaction sites to facilitate high throughput analyses. Some devices also include reaction sites located at the end of blind channels at which reagents have been previously deposited during manufacture. The reagents become suspended once sample is introduced into the reaction site. The devices can be utilized with a variety of heating devices and thus can be used in a variety of analyses requiring temperature control, including thermocycling applications such as nucleic acid amplification reactions, genotyping and gene expression analyses.
    Type: Application
    Filed: August 18, 2010
    Publication date: August 4, 2011
    Applicant: Fluidigm Corporation
    Inventors: Lincoln McBride, Michael Lucero, Marc Unger, Hany Ramez Nassef, Geoffrey Facer
  • Publication number: 20110166044
    Abstract: An SBS-formatted microfluidic device where the geometry of the plate defines an array of interrogation areas, and where each interrogation area encompasses at least one reaction site.
    Type: Application
    Filed: August 31, 2010
    Publication date: July 7, 2011
    Applicant: Fluidigm Corporation
    Inventors: Robert C. Jones, Paul Wyatt, Antoine Daridon, Jing Wang, Andrew May, David Cohen
  • Patent number: 7974380
    Abstract: An integrated fluidic circuit includes a substrate layer and a first structure coupled to the substrate layer and including a plurality of channels. The first structure is configured to provide for flow of one or more materials through the plurality of channels. The integrated fluidic circuit also includes a second structure coupled to the substrate layer. The second structure includes a plurality of control channels configured to receive an actuation pressure. The integrated fluidic circuit is characterized by a thickness of less than 1.5 mm.
    Type: Grant
    Filed: May 9, 2008
    Date of Patent: July 5, 2011
    Assignee: Fluidigm Corporation
    Inventors: Brian Fowler, Andrew May
  • Publication number: 20110143949
    Abstract: The invention relates to methods, reagents and devices for detection and characterization of nucleic acids, cells, and other biological samples. Assay method are provided in which a sample is partitioned into sub-samples, and analysis of the contents of the sub-samples carried out. The invention also provides microfluidic devices for conducting the assay. The invention also provides an analysis method using a universal primers and probes for amplification and detection.
    Type: Application
    Filed: November 12, 2010
    Publication date: June 16, 2011
    Applicant: Fluidigm Corporation
    Inventors: Christian A. HEID, Antoine Daridon
  • Publication number: 20110126910
    Abstract: The invention provides microfluidic devices and methods for carrying out sequential binary reactions.
    Type: Application
    Filed: July 23, 2010
    Publication date: June 2, 2011
    Applicant: Fluidigm Corporation
    Inventor: Andrew May
  • Publication number: 20110129841
    Abstract: The invention relates to methods, reagents and devices for detection and characterization of nucleic acids, cells, and other biological samples. Assay method are provided in which a sample is partitioned into sub-samples, and analysis of the contents of the sub-samples carried out. The invention also provides microfluidic devices for conducting the assay. The invention also provides an analysis method using a universal primers and probes for amplification and detection.
    Type: Application
    Filed: November 12, 2010
    Publication date: June 2, 2011
    Applicant: Fluidigm Corporation
    Inventors: Christian A. Heid, Antoine Daridon
  • Patent number: 7906072
    Abstract: An apparatus for imaging one or more selected fluorescence indications from a microfluidic device. The apparatus includes an imaging path coupled to least one chamber in at least one microfluidic device. The imaging path provides for transmission of one or more fluorescent emission signals derived from one or more samples in the at least one chamber of the at least one microfluidic device. The chamber has a chamber size, the chamber size being characterized by an actual spatial dimension normal to the imaging path. The apparatus also includes an optical lens system coupled to the imaging path. The optical lens system is adapted to transmit the one or more fluorescent signals associated with the chamber.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: March 15, 2011
    Assignee: Fluidigm Corporation
    Inventors: Marc A. Unger, Geoffrey Richard Facer, Barry Clerkson, Christopher G. Cesar, Neil Switz