Abstract: Substantially equal amounts of thermal energy may be provided over a build area of an additive fabrication device using as few as one heat source by selectively attenuating thermal energy emitted by the heat source. The thermal energy may be selectively attenuated by a structure that blocks portions of the thermal energy from being directly incident upon the build area such that the heat is normalized over the build area. The heat distribution over the build area may, in some embodiments, approximate the heat distribution produced by a flat field heating element, yet may be produced at comparatively lower cost and with less complex engineering.
Abstract: Techniques for improved efficiency of sintering in additive fabrication are described. According to some aspects, mechanisms for depositing and leveling source material are combined with a mechanism for heating the material. In some embodiments, one or more heating elements may be arranged to lead and/or follow a material deposition mechanism such that heat may be applied to the build region in concert with deposition of material. As a result of this technique, the heating and depositing steps may be performed closer together in time and/or heat may be applied more directly to the material than in conventional systems. As a result, greater control over material temperature may be achieved, thereby avoiding excess temperature exposure and subsequent undesirable changes to the material.
Type:
Grant
Filed:
October 17, 2018
Date of Patent:
September 14, 2021
Assignee:
Formlabs, Inc.
Inventors:
Eduardo Torrealba, Steven Thomas, Christopher Auld
Abstract: According to some aspects, a method is provided of casting an object from a mold, the method comprising obtaining a mold comprising a hollow shell of rigid material, the material comprising a thermoset polymer having a plurality of pores formed therein, providing a metal and/or ceramic slurry into an interior of the mold, exposing at least part of the mold to a low pressure environment so that a net flow of gas is produced from the interior of the mold into the low pressure environment. According to some aspects, a method of forming a porous mold is provided. According to some aspects, a photocurable liquid composition is provided, comprising a liquid photopolymer resin, particles of a solid material, in an amount between 30% and 60% by volume of the composition, and a water-soluble liquid.
Type:
Grant
Filed:
May 16, 2018
Date of Patent:
August 24, 2021
Assignee:
Formlabs, Inc.
Inventors:
Alex McCarthy, Maxim Lobovsky, Martin Galese
Abstract: Techniques for measuring a position of a build platform in an additive fabrication device are provided. Such techniques may include detecting the onset and/or dissipation of force applied to a build platform as it moves from being in contact with, to being out of contact with, a container. In some embodiments, the techniques described herein may be applied in a stereolithographic additive fabrication device. According to some embodiments, measurement of forces applied to a build platform may be used to provide for reliable and consistent measurements of the height of the build platform relative to a container by measuring such forces at various positions of the build platform and analyzing the pattern of the forces with distance from the container.
Type:
Grant
Filed:
July 15, 2019
Date of Patent:
August 24, 2021
Assignee:
Formlabs, Inc.
Inventors:
Alexander Nolet, Benjamin FrantzDale, Dmitri Megretski
Abstract: According to some aspects, a mixer for detection and/or removal of material in an undesired location of an additive fabrication device is provided. For instance, in an inverse stereolithography device, liquid photopolymer may adhere and cure or partially cure to a surface of the additive fabrication device in a location that may interfere with the additive fabrication process and/or cause the additive fabrication process to be unsuccessful. The mixer may be coupled to a movable structure within the additive fabrication device so that the mixer, when coupled to the movable structure, may be moved along at least one axis within the additive fabrication device. The mixer may be configured to detect and/or remove undesired material from a surface within the additive fabrication device.
Type:
Application
Filed:
April 26, 2021
Publication date:
August 12, 2021
Applicant:
Formlabs, Inc.
Inventors:
Jack Moldave, Sarah Bennedsen, Christian Reed, Konstantinos Oikonomopoulos, Robert Joachim, Geoff Hill, Maxim Lobovsky
Abstract: Techniques for illuminating an interior of an enclosure in an additive fabrication device are described. According to some aspects, an additive fabrication device includes a build region into which source material may be disposed and at least one source of electromagnetic radiation configured to direct radiation onto the source material in the build region to thereby form a layer of solid material from the source material. A first heater may be included that is configured to heat at least a portion of the source material in the build region. In some embodiments, an enclosure surrounds the build region and comprises a refractive aperture. In some embodiments, at least one light source is arranged to direct light into the enclosure through the refractive aperture.
Abstract: Techniques for preventing contamination of an electronic component via gas flow are described. According to some aspects, an electronic component module is configured to provide gas flow past and away from an electronic component such that thermal and material exchange is limited between the electronic component module and a coupled system. In some embodiments, the coupled system may be a portion of an additive fabrication device. As a result, a reduced number of contaminants may adhere to the electronic component, extending its lifespan and reducing maintenance.
Abstract: According to some aspects, an additive fabrication device and a build platform suitable for use within an additive fabrication device are provided. The build platform may include a build surface on which material may be formed by the additive fabrication device when the build platform is installed within the additive fabrication device. According to some embodiments, the build platform may include a flexible build layer and at least one removal mechanism configured to be actuated to apply a force to the flexible build layer. Such actuation may cause the flexible build layer to deform, thereby enabling separation of material adhered to the build surface from the build platform. According to some embodiments, the build platform may comprise a restorative mechanism that acts to return the flexible build layer to a flat state so that subsequent additive fabrication may form material on a flat build surface.
Abstract: According to some aspects, a method is provided of forming a metallic object via additive fabrication, the method comprising obtaining a geometric description of a first object with an exterior surface, generating a geometric description of a second object, the second object bounded by the exterior surface of the first object and having one or more voids, fabricating said second object via additive fabrication based on said geometric description of the second object, and depositing a metallic material onto said second object, wherein the metallic material is deposited into said voids of second object.
Type:
Grant
Filed:
October 17, 2017
Date of Patent:
July 13, 2021
Assignee:
Formlabs, Inc.
Inventors:
Marcin Slaczka, Zachary Zguris, Matthew Keeter
Abstract: Techniques for producing removable partial dentures (RPDs) through additive fabrication are described. According to some aspects, techniques are described by which a denture base may be additively fabricated in several separate portions and combined with a frame to form a completed denture base without the use of a refractory model. The denture base portions may be combined with a frame that was also produced through additive fabrication, or with a frame produced through traditional techniques. By creating an RPD through additive manufacturing it may be possible to eliminate many of the manual fabrication steps requiring highly-skilled and technical labor. This may reduce the total skilled labor time required in the production of RPDs, and/or may allow for repeatable and consistent results.
Abstract: According to some aspects, a method of additive fabrication wherein a plurality of layers of material are formed is provided. The method may comprise forming a layer of material in contact with a container, and subsequent to the forming of the layer of material, actively bending the container around at least one fixed point such that the layer of material separates from the container. According to some aspects, an additive fabrication apparatus configured to form a plurality of layers of material is provided. The apparatus may comprise a container, a build platform, one or more force generators, and at least one controller configured to, subsequent to formation of a layer of material in contact with the container, actively bend the container around at least one fixed point via the one or more force generators, such that the layer of material separates from the container.
Type:
Application
Filed:
February 22, 2021
Publication date:
June 17, 2021
Applicant:
Formlabs, Inc.
Inventors:
Steven Thomas, Yoav Reches, Jason Livingston, Jeffery Morin, Caitlin Reyda
Abstract: According to some aspects, a mixer for detection and/or removal of material in an undesired location of an additive fabrication device is provided. For instance, in an inverse stereolithography device, liquid photopolymer may adhere and cure or partially cure to a surface of the additive fabrication device in a location that may interfere with the additive fabrication process and/or cause the additive fabrication process to be unsuccessful. The mixer may be coupled to a movable structure within the additive fabrication device so that the mixer, when coupled to the movable structure, may be moved along at least one axis within the additive fabrication device. The mixer may be configured to detect and/or remove undesired material from a surface within the additive fabrication device.
Type:
Grant
Filed:
March 12, 2020
Date of Patent:
April 27, 2021
Assignee:
Formlabs, Inc.
Inventors:
Jack Moldave, Sarah Bennedsen, Christian Reed, Konstantinos Oikonomopoulos, Robert Joachim, Geoff Hill, Maxim Lobovsky
Abstract: According to some aspects, degradation of material in a sintering additive fabrication process may be mitigated or avoided by fabricating parts within a chamber that includes one or more thermal breaks. The thermal break may be implemented using a variety of structures, but generally allows material in the chamber close to the surface to be maintained at different temperatures than the material further from the surface. For instance, as a result of the thermal break, parts located within the material of the chamber that were formed earlier during fabrication may be kept cooler to avoid damage to the parts yet the upper surface (sometimes called the “build surface”) of unconsolidated material may be heated enough so as to require minimal additional energy exposure to trigger consolidation.
Type:
Application
Filed:
September 16, 2020
Publication date:
April 15, 2021
Applicant:
Formlabs, Inc.
Inventors:
Robb Morgan, Luke Plummer, Christopher Auld
Abstract: According to some aspects, techniques are described for generating support structures that may be easily removed after fabrication yet provide sufficient structural support during fabrication. In some cases, the techniques may include tuning an extent to which pillars of a support structure are interconnected to one another in regions proximate to the part. In some cases, the techniques may include fabricating very small contact structures, referred to herein as “hair” supports, in regions of a support structure where it connects with the part. In some cases, the techniques may include adjusting the shapes of members of a support structure proximate to a join between the members so that the cross-sections of the members have conformal edges.
Type:
Application
Filed:
September 21, 2020
Publication date:
March 18, 2021
Applicant:
Formlabs, Inc.
Inventors:
Benjamin FrantzDale, Garth Whelan, Amos Dudley
Abstract: According to some aspects, an additive fabrication apparatus is provided configured to form layers of material on a build platform, each layer of material being formed so as to contact a supporting liquid or a film disposed within a container, in addition to the build platform, a liquid photopolymer, and/or a previously formed layer of a material. The additive fabrication apparatus may comprise a container and a leveling element, wherein the leveling element is configured to move across a liquid-liquid interface to promote or create a flat interface between the two liquids. According to some aspects, the additive fabrication comprises a film disposed between two liquids, wherein the film maintains or provides a flat surface at the interface of the two liquids.
Type:
Application
Filed:
September 13, 2019
Publication date:
March 18, 2021
Applicant:
Formlabs, Inc.
Inventors:
Adam Damiano, Dmitri Megretski, Shane Wighton, Maxim Lobovsky
Abstract: According to some aspects, a method of additive fabrication wherein a plurality of layers of material are formed on a build platform is provided. The method may comprise forming a layer of material in contact with a container, and subsequent to the forming of the layer of material, rotating the container relative to the build platform and moving the build platform relative to the container, thereby creating an effective fulcrum about an axis, wherein the rotating of the container and moving of the build platform causes the layer of material to separate from the container. According to some embodiments, the container may be configured to rotate about a fixed axis. According to some embodiments, moving the build platform may comprise moving the build platform toward the container.
Type:
Grant
Filed:
June 13, 2019
Date of Patent:
February 23, 2021
Assignee:
Formlabs, Inc.
Inventors:
Maxim Lobovsky, Steven Thomas, Benjamin FrantzDale
Abstract: According to some aspects, an additive fabrication device and a build platform suitable for use within an additive fabrication device are provided. The build platform may include a build surface on which material may be formed by the additive fabrication device when the build platform is installed within the additive fabrication device. According to some embodiments, the build platform may include a flexible build layer and at least one removal mechanism configured to be actuated to apply a force to the flexible build layer. Such actuation may cause the flexible build layer to deform, thereby enabling separation of material adhered to the build surface from the build platform. According to some embodiments, the build platform may comprise a restorative mechanism that acts to return the flexible build layer to a flat state so that subsequent additive fabrication may form material on a flat build surface.