Abstract: A light emitting device is provided with a growing base having specific geometry to prevent delamination between the encapsulant and the growing base, and thereby enhance structural reliability of the light emitting device. Furthermore, the light emitting efficiency as well as uniformity of light output of the light emitting device can be improved by forming the side surface of the growing base with at least a curved portion or slanted portion, and uneven structures can be formed on the curved portion or slanted portion to further improve the uniformity of light output. Furthermore, the light emitting diode chips can be fabricated by taking batch processing on the growing substrate, as provided in the wafer-level structure, with the advantages of saving cost, improving yield, etc.
Type:
Grant
Filed:
September 22, 2014
Date of Patent:
November 22, 2016
Assignee:
FORMOSA EPITAXY INCORPORATION
Inventors:
Chun-Wei Chen, Jen-Chih Li, Shyi-Ming Pan
Abstract: A semiconductor light emitting element includes a transparent substrate and a plurality of light emitting diode (LED) structures. The transparent substrate has a support surface and a second main surface disposed opposite to each other. At least some of the LED structures are disposed on the support surface and form a first main surface where light emitted from with a part of the support surface without the LED structures. Each of the LED structures includes a first electrode and a second electrode. Light emitted from at least one of the LED structures passes through the transparent substrate and emerges from the second main surface. An illumination device includes the semiconductor light emitting element and a supporting base. The semiconductor light emitting element is disposed on the supporting base, and an angle is formed between the semiconductor light emitting element and the supporting base.
Type:
Grant
Filed:
March 18, 2014
Date of Patent:
November 8, 2016
Assignee:
Formosa Epitaxy Incorporation
Inventors:
Zhi-Ting Ye, Fen-Ren Chien, Shyi-Ming Pan
Abstract: A light emitting diode (LED) chip including a first type semiconductor layer, an light-emitting layer, a second type semiconductor layer, a current blocking layer, a transparent conductive layer and an electrode is provided. The light-emitting layer is disposed on the first type semiconductor layer. The second type semiconductor layer is disposed on the light-emitting layer. The current blocking layer is disposed on the second type semiconductor layer. The transparent conductive layer is disposed on the second type semiconductor layer and covered the current blocking layer. The electrode is disposed on the transparent conductive layer corresponding to the current blocking layer. The current blocking layer and the electrode respectively have a first width and a second width in a cross section view, and the first width of the current blocking layer is larger than the second width of the electrode.
Abstract: A light source device including a light emitting diode (LED) chip and a molding lens is provided. The molding lens is directly formed on the LED chip and includes a center of a bottom where the LED chip located at and a light exiting surface formed corresponding to the center. The light exiting surface comprises a concave portion, a first light exiting region surrounding the concave portion and a second light exiting region surrounding the first light exiting region. The first light exiting region connects between the concave portion and the second light exiting region.
Abstract: A semiconductor light emitting element includes a transparent substrate and a plurality of light emitting diode (LED) chips. The transparent substrate has a support surface and a second main surface disposed opposite to each other. At least some of the LED structures are disposed on the support surface and form a first main surface where light emitted from with a part of the support surface without the LED structures. Each of the LED structures includes a first electrode and a second electrode. Light emitted from at least one of the LED structures passes through the transparent substrate and emerges from the second main surface. An illumination device includes the semiconductor light emitting element and a supporting base. The semiconductor light emitting element is disposed on the supporting base, and an angle is formed between the semiconductor light emitting element and the supporting base.
Abstract: A light-emitting diode (LED) is provided. An LED die includes a first semiconductor layer, a light-emitting layer, a second semiconductor layer, a first electrode and a second electrode. At least a part of the first semiconductor is exposed from the light emitting layer and the second semiconductor layer. The first electrode and the second electrode is disposed on top of the exposed first semiconductor layer and the second semiconductor layer respectively. At least two metal pads are disposed on top of the first electrode and the second electrode of the LED die respectively. Each of the metal pads has a side surface. A fluorescent layer is disposed on a surface of the LED die. The fluorescent layer directly contacts with the side surfaces of the metal pads and fills a gap between the metal pads.
Abstract: A light emitting device including a light emitting component is provided, wherein said light emitting comprising an integrated light emitting diode and a semiconductor field effect transistor. The semiconductor field effect transistor may prevent situations such as overheating and voltage instability by controlling a current passing through the light emitting diode as well as enhancing the ability to withstand electrostatic discharge and reducing cost of the light emitting device in multiple aspects.