Patents Assigned to Formosa Epitaxy Incorporation
-
Publication number: 20080042157Abstract: A surface mount light emitting diode package (surface mount LED package) includes a leadframe, a LED chip, a plurality of conductors and an encapsulant. The LED chip is disposed over the leadframe. The LED chip has an active surface facing the leadframe and a plurality of electrodes is disposed on the active surface. In addition, the conductors are disposed between the leadframe and the LED chip, the electrodes are electrically connected to the leadframe through the conductors and the encapsulant encapsulates the LED chip and a part of the leadframe. In this way, the surface mount LED package of the present invention has better luminescence efficiency.Type: ApplicationFiled: August 16, 2006Publication date: February 21, 2008Applicant: FORMOSA EPITAXY INCORPORATIONInventors: HUA-HSIN SU, KUAN-YU HUANG
-
Patent number: 7307291Abstract: A structure for a gallium-nitride (GaN) based ultraviolet photo detector is provided. The structure contains an n-type contact layer, a light absorption layer, a light penetration layer, and a p-type contact layer, sequentially stacked on a substrate from bottom to top in this order. The layers are all made of aluminum-gallium-indium-nitride (AlGaInN) compound semiconductors. By varying the composition of aluminum, gallium, and indium, the layers, on one hand, can achieve the desired band gaps so that the photo detector is highly responsive to ultraviolet lights having specific wavelengths. On the other hand, the layers have compatible lattice constants so that problems associated with excessive stress are avoided and high-quality epitaxial structure is obtained. The structure further contains a positive electrode, a light penetration contact layer, and an anti-reflective coating layer on top of the p-type contact layer, and a negative electrode on the n-type contact layer.Type: GrantFiled: January 22, 2005Date of Patent: December 11, 2007Assignee: Formosa Epitaxy IncorporationInventors: Liang-Wen Wu, Ru-Chin Tu, Cheng-Tsang Yu, Tzu-Chi Wen, Fen-Ren Chien
-
Publication number: 20070090390Abstract: A LED chip including a substrate, a first type doped semiconductor layer, a second type doped semiconductor layer, a light emitting layer, at least an Indium-doped AlxGa1-xN based material layer (0?x<1) and at least a tunneling junction layer is provided. The first type doped semiconductor layer is disposed on the substrate, and the light emitting layer is disposed between the first type doped semiconductor layer and the second type doped semiconductor layer. The Indium-doped AlxGa1-xN based material layer is disposed on at least one surface of the light emitting layer, and the tunneling junction layer is disposed between the Indium-doped AlxGa1-xN based material layer and the first type doped semiconductor layer and/or disposed between the Indium-doped AlxGa1-xN based material layer and the second type doped semiconductor layer, wherein the Indium-doped AlxGa1-xN based material layer and the tunneling junction layer are disposed on the same side of the light emitting layer.Type: ApplicationFiled: September 29, 2006Publication date: April 26, 2007Applicant: FORMOSA EPITAXY INCORPORATIONInventors: Liang-Wen Wu, Fen-Ren Chien
-
Publication number: 20070090372Abstract: A light emitting diode including a substrate, a semiconductor stacking layer, a first electrode and a second electrode is provided. The semiconductor stacking layer including an n-type doped semiconductor layer, a p-type doped semiconductor layer and an active layer is disposed on the substrate. The n-type doped semiconductor layer has In dopant. The active layer is disposed between the n-type doped semiconductor layer and the p-type doped semiconductor layer. In addition, the first electrode is disposed on the n-type doped semiconductor layer while the second electrode is disposed on the p-type doped semiconductor layer. In the light emitting diode mentioned above, no crack, open or pin hole are found in the n-type doped semiconductor layer, thus the light emitting diode mentioned above has lower power consumption, higher manufacturing yield and better reliability.Type: ApplicationFiled: September 28, 2006Publication date: April 26, 2007Applicant: FORMOSA EPITAXY INCORPORATIONInventors: Liang-Wen Wu, Fen-Ren Chien
-
Patent number: 7180097Abstract: A GaN-based LED structure is provided so that the brightness and lighting efficiency of the GaN-based LED are enhanced effectively. The greatest difference between the GaN-based LEDs according to the invention and the prior arts lies in the addition of a thin layer on top of the p-type contact layer within the traditional structure. The thin layer could be formed using silicon-nitride (SiN), or it could have a superlattice structure made of either SiN and undoped indium-gallium-nitride (InGaN), or SiN and undoped aluminum-gallium-indium-nitride (AlGaInN), respectively. Because of the use of SiN in the thin layer, the surfaces of the GaN-based LEDs would be micro-roughened, and the total internal reflection resulted from the GaN-based LEDs' higher index of refraction than the atmosphere could be avoided. The GaN-based LEDs according to the invention therefore have superior external quantum efficiency and lighting efficiency.Type: GrantFiled: November 12, 2004Date of Patent: February 20, 2007Assignee: Formosa Epitaxy IncorporationInventors: Liang-Wen Wu, Ru-Chin Tu, Cheng-Tsang Yu, Tzu-Chi Wen, Fen-Ren Chien
-
Patent number: 7180096Abstract: An epitaxial structure for GaN-based LEDs to achieve better reverse withstanding voltage and anti-ESD capability is provided. The epitaxial structure has an additional anti-ESD thin layer on top of the p-type contact layer within traditional GaN-based LEDs, which is made of undoped indium-gallium-nitrides (InGaN) or low-band-gap (Eg<3.4 eV), undoped aluminum-indium-gallium-nitrides (AlInGaN). This anti-ESD thin layer greatly improves the GaN-based LEDs' reverse withstanding voltage and resistivity to ESD, which in turn extends the GaN-based LEDs' operation life significantly.Type: GrantFiled: October 12, 2004Date of Patent: February 20, 2007Assignee: Formosa Epitaxy IncorporationInventors: Liang-Wen Wu, Ru-Chin Tu, Cheng-Tsang Yu, Tzu-Chi Wen, Fen-Ren Chien
-
Patent number: 7173289Abstract: A light emitting diode (LED) structure includes a substrate with a surface and cylindrical photonic crystals, a first type doping semiconductor layer, a first electrode, a light emitting layer, a second type doping semiconductor layer and a second electrode. The first type doping semiconductor layer is formed on the substrate to cover the photonic crystals. The light emitting layer, the second type doping semiconductor layer and the second electrode are sequentially formed on a portion of the first type doping semiconductor layer. The first electrode is formed on the other portion of the first type doping semiconductor layer without being covered by the light emitting layer. Because the substrate with photonic crystals can improve the epitaxial quality of the first type doping semiconductor layer and increase the energy of the light forwardly emitting out of the LED, the light emitting efficiency of the LED is effectively enhanced.Type: GrantFiled: September 8, 2005Date of Patent: February 6, 2007Assignee: Formosa Epitaxy IncorporationInventors: Liang-Wen Wu, Ya-Ping Tsai, Fen-Ren Chien, Fu-Yu Chang, Cheng-Tsang Yu, Tzu-Chi Wen
-
Patent number: 7148519Abstract: A GaN LED structure with a short period superlattice contacting layer is provided. The LED structure comprises, from the bottom to top, a substrate, a double buffer layer, an n-type GaN layer, a short period superlattice contacting layer, an active layer, a p-type shielding layer, and a contacting layer. The feature is to avoid the cracks or pin holes in the thick n-type GaN layer caused during the fabrication of heavily doped (n>1×1019 cm?3) thick n-type GaN contacting layer, so that the quality of the GaN contacting layer is assured. In addition, by using short period heavily silicon doped Al1-x-yGaxInyN (n++-Al1-x-yGaxInyN) to grow a superlattice structure to become a short period superlattice contacting layer structure, which is used as a low resistive n-type contacting layer in a GaInN/GaN MQW LED. In the following steps, it is easier to form an n-type ohmic contacting layer, and the overall electrical characteristics are improved.Type: GrantFiled: December 19, 2005Date of Patent: December 12, 2006Assignee: Formosa Epitaxy IncorporationInventors: Liang-Wen Wu, Cheng-Tsang Yu, Tzu-Chi Wen, Fen-Ren Chien
-
Patent number: 7105850Abstract: Disclosed is a GaN LED structure with a p-type contacting layer using Al—Mg-codoped In1?yGayN grown at low temperature, and having low resistivity. The LED structure comprises, from the bottom to top, a substrate, a buffer layer, an n-type GaN layer, an active layer, a p-type shielding layer, and a p-type contacting layer. In this invention, Mg and Al are used to co-dope the In1?yGayN to grow a low resistive p-type contacting layer at low temperature. Because of the Al—Mg-codoped, the light absorption problem of the p-type In1?yGayN layer is improved. The product, not only has the advantage of convenience of the p-type contacting layer for being manufactured at low temperature, but also shows good electrical characteristics and lowers the operating voltage of the entire element so that the energy consumption during operation is reduced and the yield rate is increased.Type: GrantFiled: February 3, 2005Date of Patent: September 12, 2006Assignee: Formosa Epitaxy IncorporationInventors: Liang-Wen Wu, Ru-Chin Tu, Cheng-Tsang Yu, Tzu-Chi Wen, Fen-Ren Chien
-
Patent number: 7087924Abstract: Disclosed is a multi-quantum-well light emitting diode, which makes enormous adjustments and improvements over the conventional light emitting diode, and further utilizes a transparent contact layer of better transmittance efficiency, so as to significantly raise the illuminance of this light emitting diode and its light emission efficiency. The multi-quantum-well light emitting diode has a structure including: substrate, buffer layer, n-type gallium-nitride layer, active light-emitting-layer, p-type cladding layer, p-type contact layer, barrier buffer layer, transparent contact layer, and the n-type electrode layer.Type: GrantFiled: September 16, 2004Date of Patent: August 8, 2006Assignee: Formosa Epitaxy IncorporationInventors: Liang-Wen Wu, Ru-Chin Tu, Cheng-Tsang Yu, Tzu-Chi Wen, Fen-Ren Chien
-
Patent number: 7087922Abstract: A gallium-nitride based light-emitting diode structure includes a digital penetration layer to raise its reverse withstanding voltage and electrostatic discharge. The digital penetration layer is formed by alternate stacking layers of AlxInyGa1-x-yNzP1-z/AlpInqGa1-p-qNrP1-r, wherein 0?x,y,z,p,q,r?1, and AlxInyGa1-x-yNzP1-z has an energy gap greater than that of AlpInqGa1-p-qNrP1-r. The AlxInyGa1-x-yNzP1-z layers have increasing thickness and the AlpInqGa1-p-qNzP1-r layers have decreasing thickness.Type: GrantFiled: November 16, 2004Date of Patent: August 8, 2006Assignee: Formosa Epitaxy IncorporationInventors: Liang-Wen Wu, Ru-Chin Tu, Cheng-Tsang Yu, Tzu-Chi Wen, Fen-Ren Chien
-
Patent number: 7049638Abstract: A GaN-based LED structure is provided so that the brightness and luminous efficiency of the GaN-based LED are enhanced effectively. The greatest difference between the GaN-based LEDs according to the invention and the prior arts lies in the addition of a masking buffer layer on top of the p-type contact layer and a p-type roughened contact layer on top of the masking buffer layer. The masking buffer layer could be formed using MOCVD to deposit SixNy (x,y?1), MgwNz (w,z?1), or AlsIntGa1-s-tN (0?s,t<1, s+t?1) heavily doped with Si and/or Mg. The masking buffer layer is actually a mask containing multiple randomly distributed clusters. Then, on top of the masking buffer layer, a p-type roughened contact layer made of p-type AluInGa1-u-vN (0?u,v<1, u+v?1) is developed. The p-type roughened contact layer does not grow directly on top of the masking buffer layer.Type: GrantFiled: January 5, 2005Date of Patent: May 23, 2006Assignee: Formosa Epitaxy IncorporationInventors: Liang-Wen Wu, Ru-Chin Tu, Cheng-Tsang Yu, Tzu-Chi Wen, Fen-Ren Chien
-
Patent number: 7042018Abstract: A GaN LED structure with a short period superlattice digital contacting layer is provided. The LED structure comprises, from the bottom to top, a substrate, a double buffer layer, an n-type GaN layer, a short period superlattice digital contacting layer, an active layer, a p-type shielding layer, and a contacting layer. The feature is to avoid the cracks or pin holes in the thick n-type GaN layer caused during the fabrication of heavily doped (n>1×1019cm?3) thick n-type GaN contacting layer, so that the quality of the GaN contacting layer is assured. In addition, by using short period heavily doped silicon Al1-x-yGaxInyN (n++-Al1-x-yGaxInyN) to grow a superlattice structure to become a short period superlattice digital contacting layer structure, which is used as a low resistive n-type contacting layer in a GaInN/GaN MQW LED. In the following steps, it is easier to form an n-type ohmic contacting layer, and the overall electrical characteristics are improved.Type: GrantFiled: September 22, 2004Date of Patent: May 9, 2006Assignee: Formosa Epitaxy IncorporationInventors: Ru-Chin Tu, Liang-Wen Wu, Cheng-Tsang Yu, Tzu-Chi Wen, Fen-Ren Chien
-
Patent number: 7042019Abstract: A structure for the n-type contact layer in the GaN-based MQW LEDs is provided. Instead of using Si-doped GaN as commonly found in conventional GaN-based MQW LEDs, the n-type contact layer provided by the present invention achieves high doping density (>1×1019 cm?3) and low resistivity through a superlattice structure combining two types of materials, AlmInnGa1-m-nN and AlpInqGa1-p-qN (0?m,n<1, 0<p,q<1, p+q?1, m<p), each having its specific composition and doping density. In addition, by controlling the composition of Al, In, and Ga in the two materials, the n-type contact layer would have a compatible lattice constant with the substrate and the epitaxial structure of the GaN-based MQW LEDs. This n-type contact layer, therefore, would not chap from the heavy Si doping, have a superior quality, and reduce the difficulties of forming n-type ohmic contact electrode. In turn, the GaN-based MQW LEDs would require a lower operation voltage.Type: GrantFiled: October 12, 2004Date of Patent: May 9, 2006Assignee: Formosa Epitaxy IncorporationInventors: Liang-Wen Wu, Ru-Chin Tu, Cheng-Tsang Yu, Tzu-Chi Wen, Fen-Ren Chien
-
Patent number: 7033949Abstract: A method for manufacturing a GaN-based light-emitting diode (LED) is provided with the following steps of: providing a substrate; forming a GaN semiconductor epitaxy layer on the substrate, the GaN semiconductor epitaxy layer further including an n-type GaN contact layer, a light-emitting layer and a p-type GaN contact layer; forming a digital penetration layer on the p-type GaN contact layer; using a multi-step dry etching method to etch the digital penetration layer, the p-type GaN contact layer, the light-emitting layer to form an n-metal forming area, etching terminating at the light-emitting layer; forming a first ohmic contact electrode on the digital penetration layer for a p-type ohmic contact layer and a second ohmic contact electrode on the n-metal forming area for an n-type ohmic contact layer; and finally, forming pads on both first and second ohmic contact electrodes.Type: GrantFiled: December 29, 2003Date of Patent: April 25, 2006Assignee: Formosa Epitaxy IncorporationInventors: Wen-How Lan, Kuang-Neng Yang, Lung-Chien Chen, Fen-Ren Chien
-
Patent number: 6979835Abstract: An epitaxial structure for the GaN-based LED is provided. The GaN-based LED uses a substrate usually made of sapphire or silicon-carbide (SiC). On top of the substrate, the GaN-based LED contains an n-type contact layer made of an n-type GaN-based material. On top of the n-type contact layer, the GaN-based LED further contains a lower barrier layer covering part of the surface of the n-type contact layer. A negative electrode is also on top of and has an ohmic contact with the n-type contact layer in an area not covered by the lower barrier layer. On top of the lower barrier layer, the GaN-based LED then further contains an active layer made of aluminum-gallium-indium-nitride, an upper barrier layer, a p-type contact layer made of a magnesium (Mg)-doped GaN material, and a positive electrode having an ohmic contact with the p-type contact layer, sequentially stacked in this order from bottom to top.Type: GrantFiled: September 11, 2004Date of Patent: December 27, 2005Assignee: Formosa Epitaxy IncorporationInventors: Cheng-Tsang Yu, Ru-Chin Tu, Liang-Wen Wu, Tzu-Chi Wen, Fen-Ren Chien
-
Patent number: 6967346Abstract: A light emitting diode (LED) structure and manufacture method thereof are disclosed, wherein a buffer layer is grown on a substrate and then an LED structural layer is grown on the buffer layer. The LED structural layer comprises a p-type quantum-dot epitaxial layer on a p-type GaN layer. As the p-type quantum-dot epitaxial layer has a coarsening and scattering effect the path of light emitted from an INGaN multiple-quantum-well structural layer is changed. Therefore, it is possible to decrease the probability of total reflection and thereby increase the light-emitting efficiency of LED.Type: GrantFiled: August 2, 2003Date of Patent: November 22, 2005Assignee: Formosa Epitaxy IncorporationInventors: Fen-Ren Chien, Lung-Chien Chen
-
Patent number: 6914264Abstract: A GaN semiconductor stack layer is formed on top of a substrate for manufacturing a light emitting diode. The GaN semiconductor stack layer includes, from the bottom up, an N-type GaN contact layer, a light emitting stack layer and a P-type contact layer. The next step is to form a digital transparent layer on the P-type GaN contact layer, then use dry etching technique to etch downward through the digital transparent layer, the P-type GaN contact layer, the light emitting layer, the N-type GaN contact layer, and form an N-metal forming area within the N-type GaN contact layer. The next step is to form a first ohmic contact electrode on the P-type contact layer to serve as P-type ohmic contact, and a second ohmic contact electrode on the N-metal forming area to serve as N-type ohmic contact. Finally, a bump pad is formed on the first ohmic contact electrode and the second ohmic contact electrode, respectively.Type: GrantFiled: October 29, 2002Date of Patent: July 5, 2005Assignee: Formosa Epitaxy IncorporationInventors: Lung-Chien Chen, Wen-How Lan, Fen-Ren Chien
-
Patent number: 6841804Abstract: A white LED device includes a member, a plurality of LEDs, fixed on the member, the LEDS further comprising blue GaN LEDs, a reflector, in parabolic shape, to encase thed member and the plurality of LEDs, yellow phosphor, coated on the surface of the reflector facing the LEDs, and a supporting component, for connecting the member and the reflector in order to connect the LEDs, the member and the reflector together. The main feature of the present invention includes that the LEDs emit blue light when positively biased. The blue light triggers yellow phosphor to generate a yellow light, and the blue light mixed with the yellow light to become a white light. The white light is reflected by the reflector to project onto target objects.Type: GrantFiled: October 27, 2003Date of Patent: January 11, 2005Assignee: Formosa Epitaxy IncorporationInventors: Lung-Chien Chen, Feng-Ku Chien, Wen-How Lan, Fen-Ren Chien
-
Patent number: 6753552Abstract: A growth-selective structure of LED is created by growing first and patterning an oxidation layer on a substrate, then applying a lateral-growth technology to form a buffer layer on the oxidation layer selectively, and an n-GaN layer, an active layer, and a p-GaN layer on the buffer layer one after another.Type: GrantFiled: August 2, 2003Date of Patent: June 22, 2004Assignee: Formosa Epitaxy IncorporationInventors: Wen-How Lan, Lung-Chien Chen, Fen-Ren Chien