Patents Assigned to Formosa Plastics Corporation
  • Patent number: 11952445
    Abstract: A Ziegler-Natta catalyzed ethylene/alpha-olefins copolymer is provided having sporadic long chain branches and reversed comonomer composition distribution or short chain branching distribution (SCBD) in the high molecular weight fractions. According to the invention, polyethylene film made with the inventive copolymer has a balance of improved physical, optical, mechanical properties as well as processability. In one aspect, the film includes a 1% secant modulus of greater than 25,000 psi, a film haze of less than 10, a film clarity of greater than 90, a dart impart resistance of greater than 500 g/mil, and a MD tear strength of greater than 500 g/mil.
    Type: Grant
    Filed: November 23, 2021
    Date of Patent: April 9, 2024
    Assignee: Formosa Plastics Corporation, USA
    Inventors: Guangxue Xu, Zhiming Wang, Chih-Jian Chen, Honglan Lu
  • Patent number: 11932718
    Abstract: Exfoliated nanoplatelets functionalized with a non-polar moiety, such as an ethylene or propylene derived polymer, are useful for forming composites, films, and polymer blends.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: March 19, 2024
    Assignees: The Texas A&M University System, Formosa Plastics Corporation
    Inventors: Hung-Jue Sue, Joseph Baker, Mingzhen Zhao, Hong-Mao Wu, Wen-Hao Kang, Jen-Long Wu
  • Publication number: 20240084051
    Abstract: Disclosed are support-activators and catalyst compositions comprising the support-activators for polymerizing olefins in which the support-activator includes clay heteroadduct, prepare from a colloidal phyllosilicate such as a colloidal smectite clay, which is chemically-modified with a heterocoagulation agent. By limiting the amount of heterocoagulation reagent relative to the colloidal smectite clay as described herein, the smectite heteroadduct support-activator is a porous and amorphous solid which can be readily isolated from the resulting slurry by a conventional filtration process, and which can activate metallocenes and related catalysts toward olefin polymerization. Related compositions and processes are disclosed.
    Type: Application
    Filed: October 11, 2023
    Publication date: March 14, 2024
    Applicant: Formosa Plastics Corporation, U.S.A.
    Inventors: Michael D. Jensen, Kevin Chung, Daoyong Wang, Wei-Chun Shih, Guangxue Xu, Chih-Jian Chen, Charles R. Johnson, II, Mary Lou Cowen
  • Patent number: 11898306
    Abstract: The present application relates to a sizing agent composition, a carbon fiber material and a composite material. The sizing agent composition comprises specific compositions, thereby producing a sizing agent having emulsion droplets with specific diameter. The sizing agent has excellent emulsion stability, and it can efficiently improve hygroscopicity and dimensional stability of the carbon fiber material. Besides, the sizing agent can improve bonding properties between the carbon fiber material and resin matrix, therefore enhancing properties of the composite material.
    Type: Grant
    Filed: June 28, 2022
    Date of Patent: February 13, 2024
    Assignee: FORMOSA PLASTICS CORPORATION
    Inventors: Hsuan-Yin Chen, Long-Tyan Hwang
  • Patent number: 11898276
    Abstract: Carbon fiber and method of forming the same are provided. The method modifies proportion of a finishing oil to control a relation between a surface tension and a particle size of the finishing oil, and thus penetration of the finishing oil into an interior of the carbon fiber is avoided. Therefore, the carbon fiber can have both low oil residues and a high strength.
    Type: Grant
    Filed: May 27, 2022
    Date of Patent: February 13, 2024
    Assignee: FORMOSA PLASTICS CORPORATION
    Inventors: Kun-Yeh Tsai, Chia-Chi Hung, Wen-Ju Chou, Ching-Wen Chen, Chia-Chun Hsieh, Shi-Jie Lin, Long-Tyan Hwang
  • Publication number: 20230399420
    Abstract: Disclosed are support-activators and catalyst compositions comprising the support-activators for polymerizing olefins in which the support-activator includes a clay heteroadduct, also termed a composite, prepared from a colloidal phyllosilicate such as a colloidal smectite clay, which is chemically-modified with a surfactant. In an aspect, the clay composite can comprise the contact product of a colloidal smectite clay and a surfactant in a liquid carrier, but in the absence of any other reactant such as a cationic polymetallate, and their use as support-activators for metallocene precatalysts is also described. The use of surfactants with cationic polymetallates in forming clay-composites is also described.
    Type: Application
    Filed: May 24, 2023
    Publication date: December 14, 2023
    Applicant: Formosa Plastics Corporation, U.S.A.
    Inventors: Kevin Chung, Michael D. Jensen, Yiqun Fang, Casey Zamzow, Charles R. Johnson, II, Mary Lou Cowen, Jenny Chun-Yu Chen
  • Patent number: 11814461
    Abstract: Disclosed are support-activators and catalyst compositions comprising the support-activators for polymerizing olefins in which the support-activator includes clay heteroadduct, prepare from a colloidal phyllosilicate such as a colloidal smectite clay, which is chemically-modified with a heterocoagulation agent. By limiting the amount of heterocoagulation reagent relative to the colloidal smectite clay as described herein, the smectite heteroadduct support-activator is a porous and amorphous solid which can be readily isolated from the resulting slurry by a conventional filtration process, and which can activate metallocenes and related catalysts toward olefin polymerization. Related compositions and processes are disclosed.
    Type: Grant
    Filed: March 15, 2023
    Date of Patent: November 14, 2023
    Assignee: FORMOSA PLASTICS CORPORATION, U.S.A.
    Inventors: Michael D Jensen, Kevin Chung, Daoyong Wang, Wei-Chun Shih, Guangxue Xu, Chih-Jian Chen, Charles R. Johnson, II, Mary Lou Cowen
  • Patent number: 11760851
    Abstract: A cast film, for use in monolayer and multilayer applications, having an outstanding inherent cling property is disclosed. Additionally, a multilayer cast film utilizing a cast film component layer prepared from a Ziegler-Natta catalyzed ethylene and alpha-olefin copolymer is disclosed, wherein the cast film component layer has a cling force of at least 200 grams-force per inch width at 200% pre-stretch, a slow puncture resistance of greater than 50 J/mm, and a TD tear strength of greater than 450 g/mil, with no cling additives present in the cast film component layer.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: September 19, 2023
    Assignee: Formosa Plastics Corporation, U.S.A.
    Inventors: Chih-Jian Chen, Honglan Lu, Guangxue Xu, Ming-Yung Lee, Raj Ranjan
  • Publication number: 20230272214
    Abstract: A thermoplastic vulcanizate and a method for preparing the same are provided. The thermoplastic vulcanizate includes a thermoplastic, a cross-linked rubber particle, and a compatibilizer, wherein the cross-linked rubber particle is dispersed in the thermoplastic serving as a continuous phase, wherein the cross-linked rubber particle is a product of a composition via a cross-linking reaction. The composition includes an ethylene copolymer and a cross-linking agent, wherein the weight ratio of the thermoplastic to the ethylene copolymer is 3:17 to 1:1.
    Type: Application
    Filed: February 23, 2023
    Publication date: August 31, 2023
    Applicants: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE, FORMOSA PLASTICS CORPORATION
    Inventors: Jin-An WU, Fu-Ming CHIEN, Yun-Chen CHANG, Jen-Long WU, Wen-Hao KANG, Kuei-Pin LIN, Ying-Cheng WENG, Shih-Hsun LIN
  • Publication number: 20230242683
    Abstract: Disclosed are support-activators and catalyst compositions comprising the support-activators for polymerizing olefins in which the support-activator includes clay heteroadduct, prepare from a colloidal phyllosilicate such as a colloidal smectite clay, which is chemically-modified with a heterocoagulation agent. By limiting the amount of heterocoagulation reagent relative to the colloidal smectite clay as described herein, the smectite heteroadduct support-activator is a porous and amorphous solid which can be readily isolated from the resulting slurry by a conventional filtration process, and which can activate metallocenes and related catalysts toward olefin polymerization. Related compositions and processes are disclosed.
    Type: Application
    Filed: March 15, 2023
    Publication date: August 3, 2023
    Applicant: Formosa Plastics Corporation, U.S.A.
    Inventors: Michael D. Jensen, Kevin Chung, Daoyong Wang, Wei-Chun Shih, Guangxue Xu, Chih-Jian Chen, Charles R. Johnson, II, Mary Lou Cowen
  • Patent number: 11673116
    Abstract: The present invention relates to a superabsorbent polymer and a method for producing the same. The superabsorbent polymer includes a core layer polymerized with monomers having carboxylic group, a first shell layer formed from a surface crosslinking agent, and a second shell layer formed from zingiberaceae extracts. By a surface modification on the first shell layer performed from a specific amount of the zingiberaceae extracts, the superabsorbent polymer produced according to the method for producing the same has a good antimicrobial property and deodorizing effects, and retains an original absorbent property.
    Type: Grant
    Filed: August 10, 2021
    Date of Patent: June 13, 2023
    Assignee: FORMOSA PLASTICS CORPORATION
    Inventors: Zhong-Yi Chen, Cheng-Lin Lee, Feng-Yi Chen, Yu-Yen Chuang
  • Patent number: 11634513
    Abstract: Disclosed are support-activators and catalyst compositions comprising the support-activators for polymerizing olefins in which the support-activator includes clay heteroadduct, prepare from a colloidal phyllosilicate such as a colloidal smectite clay, which is chemically-modified with a heterocoagulation agent. By limiting the amount of heterocoagulation reagent relative to the colloidal smectite clay as described herein, the smectite heteroadduct support-activator is a porous and amorphous solid which can be readily isolated from the resulting slurry by a conventional filtration process, and which can activate metallocenes and related catalysts toward olefin polymerization. Related compositions and processes are disclosed.
    Type: Grant
    Filed: April 19, 2022
    Date of Patent: April 25, 2023
    Assignee: FORMOSA PLASTICS CORPORATION, U.S.A.
    Inventors: Michael D Jensen, Kevin Chung, Daoyong Wang, Wei-Chun Shih, Guangxue Xu, Chih-Jian Chen, Charles R. Johnson, II, Mary Lou Cowen
  • Patent number: 11572425
    Abstract: Cyclic organosilicon compounds having a structure represented by the general formula and a method for using thereof as a component of catalysts for producing propylene polymer having a very high melt-flowability are disclosed. The cyclic organosilicon compounds are employed as external electron donors in Ziegler-Natta catalyst systems to dramatically improve the hydrogen response, and therefore the catalyst systems can be used to prepare polymer having high melt-flowability and high isotacticity at high yield.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: February 7, 2023
    Assignee: Formosa Plastics Corporation, U.S.A.
    Inventors: Lei Zhang, Yiqun Fang
  • Patent number: 11492429
    Abstract: What is disclosed is a Ziegler-Natta catalyzed ethylene and alpha-olefin LLDPE copolymer having a unique composition distribution and long chain-branching. The polymers of the present invention inherently exhibit outstanding melt strength with great bubble stability, sufficient flexibility, excellent gel performance, as well as desirable mechanical properties such as balanced toughness and stiffness, which are desirable properties for thick gauge film applications. Specifically, the polymers of the present invention.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: November 8, 2022
    Assignee: Formosa Plastics Corporation, U.S.A.
    Inventors: Peng Li, Ming-Yung Lee, Tieqi Li, Honglan Lu
  • Patent number: 11427660
    Abstract: Organosilicon compounds having a structure represented by the general formula and a method for using same are provided as electron donors in the Ziegler-Natta type catalyst system for the homo-polymerization or co-polymerization of alpha olefins. The organosilicon compounds may be used in the preparation of the solid catalyst component, thus serving as “internal electron donors”, or employed during or prior to polymerization as “external electron donors,” and therefore they can be used to prepare phthalate-free polyolefins.
    Type: Grant
    Filed: April 19, 2017
    Date of Patent: August 30, 2022
    Assignee: Formosa Plastics Corporation, USA
    Inventors: Demin Xu, Guangxue Xu
  • Publication number: 20220242976
    Abstract: Disclosed are support-activators and catalyst compositions comprising the support-activators for polymerizing olefins in which the support-activator includes clay heteroadduct, prepare from a colloidal phyllosilicate such as a colloidal smectite clay, which is chemically-modified with a heterocoagulation agent. By limiting the amount of heterocoagulation reagent relative to the colloidal smectite clay as described herein, the smectite heteroadduct support-activator is a porous and amorphous solid which can be readily isolated from the resulting slurry by a conventional filtration process, and which can activate metallocenes and related catalysts toward olefin polymerization. Related compositions and processes are disclosed.
    Type: Application
    Filed: April 19, 2022
    Publication date: August 4, 2022
    Applicant: Formosa Plastics Corporation, U.S.A.
    Inventors: Michael D Jensen, Kevin Chung, Daoyong Wang, Wei-Chun Shih, Guangxue Xu, Chih-Jian Chen, Charles R. Johnson, II, Mary Lou Cowen
  • Publication number: 20220241759
    Abstract: A regeneration method of a nitrogen-containing carbon catalyst includes the following steps: roasting the nitrogen-containing carbon catalyst in a nitrogen-containing atmosphere to obtain a regenerated nitrogen-containing carbon catalyst. The method is a universal method, which is suitable for nitrogen-doped carbon catalysts and can be used to regenerate a nitrogen-containing carbon catalyst for producing vinyl chloride (VC) through 1,2-dichloroethane cracking. The method can greatly reduce the production cost of the catalyst and increase the service life of the catalyst, and a regeneration process thereof is fast, simple, and controllable, and does not require high temperatures.
    Type: Application
    Filed: November 26, 2020
    Publication date: August 4, 2022
    Applicants: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES, FORMOSA PLASTICS CORPORATION
    Inventors: Sisi FAN, Jinming XU, Yanqiang HUANG, Hongmin DUAN, Tao ZHANG, MING-HUNG CHENG, Wan-tun HUNG, Yu-Cheng CHEN, Chien-Hui WU, Ya-Wen CHENG, Ming-Hsien WEN, Chao-Chin CHANG, Tsao-Cheng HUANG, Lu-Chen YEH
  • Patent number: 11339229
    Abstract: Disclosed are support-activators and catalyst compositions comprising the support-activators for polymerizing olefins in which the support-activator includes clay heteroadduct, prepare from a colloidal phyllosilicate such as a colloidal smectite clay, which is chemically-modified with a heterocoagulation agent. By limiting the amount of heterocoagulation reagent relative to the colloidal smectite clay as described herein, the smectite heteroadduct support-activator is a porous and amorphous solid which can be readily isolated from the resulting slurry by a conventional filtration process, and which can activate metallocenes and related catalysts toward olefin polymerization. Related compositions and processes are disclosed.
    Type: Grant
    Filed: January 27, 2020
    Date of Patent: May 24, 2022
    Assignee: FORMOSA PLASTICS CORPORATION, U.S.A.
    Inventors: Michael D. Jensen, Kevin Chung, Daoyong Wang, Wei-Chun Shih, Guangxue Xu, Chih-Jian Chen, Charles R. Johnson, II, Mary Lou Cowen
  • Patent number: 11338276
    Abstract: A catalyst for preparing chloroethylene by cracking 1,2-dichloroethane and a preparation and regeneration method thereof are disclosed in the present application. A catalyst for preparing chloroethylene by cracking 1,2-dichloroethane includes a carrier and a nitrogen-containing carbon as an active component of the catalyst with the nitrogen-containing carbon being loaded on the carrier. The method for preparing the catalyst includes: supporting an organic matter on an inorganic porous carrier and then performing a carbonization-nitridation process by pyrolysis in an atmosphere containing the nitrogen-containing compound. The method for regenerating the catalyst includes: calcinating the catalyst with deactivated carbon deposit in an oxidizing atmosphere to remove all the carbonaceous portions on the surface, and repeating the above preparation process of the catalyst.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: May 24, 2022
    Assignees: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES, FORMOSA PLASTICS CORPORATION
    Inventors: Jinming Xu, Sisi Fan, Yanqiang Huang, Fao Zhang, Chin Lien Huang, Wan Tun Hung, Tu Cheng Chen, Chien Hui Wu, Ya Wen Cheng, Ming Hsien Wen, Chao Chin Chang, Tsao Cheng Huang
  • Patent number: 11331840
    Abstract: A lamination forming system includes a melt extruder, a nozzle head and a carrier unit. The melt extruder is configured to melt a plastic raw material into a plastic melt and to deliver the same. The nozzle head includes a sprue channel that has an inlet connected to the melt extruder for entry of the melt plastic into the sprue channel, and an outlet disposed distally from the inlet to deliver the plastic melt from the sprue channel. The carrier unit includes a slide table controllable to move relative to the nozzle head. The slide table is configure to carry the plastic melt outputted from the nozzle head.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: May 17, 2022
    Assignees: FORMOSA PLASTICS CORPORATION, NATIONAL KAOHSIUNG UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Chung-Ching Huang, Te-Wen Lee, Jen-Long Wu, Wen-Hao Kang, Ying-Cheng Weng