Patents Assigned to Formosa Plastics Corporation
  • Patent number: 11673116
    Abstract: The present invention relates to a superabsorbent polymer and a method for producing the same. The superabsorbent polymer includes a core layer polymerized with monomers having carboxylic group, a first shell layer formed from a surface crosslinking agent, and a second shell layer formed from zingiberaceae extracts. By a surface modification on the first shell layer performed from a specific amount of the zingiberaceae extracts, the superabsorbent polymer produced according to the method for producing the same has a good antimicrobial property and deodorizing effects, and retains an original absorbent property.
    Type: Grant
    Filed: August 10, 2021
    Date of Patent: June 13, 2023
    Assignee: FORMOSA PLASTICS CORPORATION
    Inventors: Zhong-Yi Chen, Cheng-Lin Lee, Feng-Yi Chen, Yu-Yen Chuang
  • Patent number: 11634513
    Abstract: Disclosed are support-activators and catalyst compositions comprising the support-activators for polymerizing olefins in which the support-activator includes clay heteroadduct, prepare from a colloidal phyllosilicate such as a colloidal smectite clay, which is chemically-modified with a heterocoagulation agent. By limiting the amount of heterocoagulation reagent relative to the colloidal smectite clay as described herein, the smectite heteroadduct support-activator is a porous and amorphous solid which can be readily isolated from the resulting slurry by a conventional filtration process, and which can activate metallocenes and related catalysts toward olefin polymerization. Related compositions and processes are disclosed.
    Type: Grant
    Filed: April 19, 2022
    Date of Patent: April 25, 2023
    Assignee: FORMOSA PLASTICS CORPORATION, U.S.A.
    Inventors: Michael D Jensen, Kevin Chung, Daoyong Wang, Wei-Chun Shih, Guangxue Xu, Chih-Jian Chen, Charles R. Johnson, II, Mary Lou Cowen
  • Patent number: 11572425
    Abstract: Cyclic organosilicon compounds having a structure represented by the general formula and a method for using thereof as a component of catalysts for producing propylene polymer having a very high melt-flowability are disclosed. The cyclic organosilicon compounds are employed as external electron donors in Ziegler-Natta catalyst systems to dramatically improve the hydrogen response, and therefore the catalyst systems can be used to prepare polymer having high melt-flowability and high isotacticity at high yield.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: February 7, 2023
    Assignee: Formosa Plastics Corporation, U.S.A.
    Inventors: Lei Zhang, Yiqun Fang
  • Patent number: 11492429
    Abstract: What is disclosed is a Ziegler-Natta catalyzed ethylene and alpha-olefin LLDPE copolymer having a unique composition distribution and long chain-branching. The polymers of the present invention inherently exhibit outstanding melt strength with great bubble stability, sufficient flexibility, excellent gel performance, as well as desirable mechanical properties such as balanced toughness and stiffness, which are desirable properties for thick gauge film applications. Specifically, the polymers of the present invention.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: November 8, 2022
    Assignee: Formosa Plastics Corporation, U.S.A.
    Inventors: Peng Li, Ming-Yung Lee, Tieqi Li, Honglan Lu
  • Patent number: 11427660
    Abstract: Organosilicon compounds having a structure represented by the general formula and a method for using same are provided as electron donors in the Ziegler-Natta type catalyst system for the homo-polymerization or co-polymerization of alpha olefins. The organosilicon compounds may be used in the preparation of the solid catalyst component, thus serving as “internal electron donors”, or employed during or prior to polymerization as “external electron donors,” and therefore they can be used to prepare phthalate-free polyolefins.
    Type: Grant
    Filed: April 19, 2017
    Date of Patent: August 30, 2022
    Assignee: Formosa Plastics Corporation, USA
    Inventors: Demin Xu, Guangxue Xu
  • Publication number: 20220242976
    Abstract: Disclosed are support-activators and catalyst compositions comprising the support-activators for polymerizing olefins in which the support-activator includes clay heteroadduct, prepare from a colloidal phyllosilicate such as a colloidal smectite clay, which is chemically-modified with a heterocoagulation agent. By limiting the amount of heterocoagulation reagent relative to the colloidal smectite clay as described herein, the smectite heteroadduct support-activator is a porous and amorphous solid which can be readily isolated from the resulting slurry by a conventional filtration process, and which can activate metallocenes and related catalysts toward olefin polymerization. Related compositions and processes are disclosed.
    Type: Application
    Filed: April 19, 2022
    Publication date: August 4, 2022
    Applicant: Formosa Plastics Corporation, U.S.A.
    Inventors: Michael D Jensen, Kevin Chung, Daoyong Wang, Wei-Chun Shih, Guangxue Xu, Chih-Jian Chen, Charles R. Johnson, II, Mary Lou Cowen
  • Publication number: 20220241759
    Abstract: A regeneration method of a nitrogen-containing carbon catalyst includes the following steps: roasting the nitrogen-containing carbon catalyst in a nitrogen-containing atmosphere to obtain a regenerated nitrogen-containing carbon catalyst. The method is a universal method, which is suitable for nitrogen-doped carbon catalysts and can be used to regenerate a nitrogen-containing carbon catalyst for producing vinyl chloride (VC) through 1,2-dichloroethane cracking. The method can greatly reduce the production cost of the catalyst and increase the service life of the catalyst, and a regeneration process thereof is fast, simple, and controllable, and does not require high temperatures.
    Type: Application
    Filed: November 26, 2020
    Publication date: August 4, 2022
    Applicants: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES, FORMOSA PLASTICS CORPORATION
    Inventors: Sisi FAN, Jinming XU, Yanqiang HUANG, Hongmin DUAN, Tao ZHANG, MING-HUNG CHENG, Wan-tun HUNG, Yu-Cheng CHEN, Chien-Hui WU, Ya-Wen CHENG, Ming-Hsien WEN, Chao-Chin CHANG, Tsao-Cheng HUANG, Lu-Chen YEH
  • Patent number: 11338276
    Abstract: A catalyst for preparing chloroethylene by cracking 1,2-dichloroethane and a preparation and regeneration method thereof are disclosed in the present application. A catalyst for preparing chloroethylene by cracking 1,2-dichloroethane includes a carrier and a nitrogen-containing carbon as an active component of the catalyst with the nitrogen-containing carbon being loaded on the carrier. The method for preparing the catalyst includes: supporting an organic matter on an inorganic porous carrier and then performing a carbonization-nitridation process by pyrolysis in an atmosphere containing the nitrogen-containing compound. The method for regenerating the catalyst includes: calcinating the catalyst with deactivated carbon deposit in an oxidizing atmosphere to remove all the carbonaceous portions on the surface, and repeating the above preparation process of the catalyst.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: May 24, 2022
    Assignees: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES, FORMOSA PLASTICS CORPORATION
    Inventors: Jinming Xu, Sisi Fan, Yanqiang Huang, Fao Zhang, Chin Lien Huang, Wan Tun Hung, Tu Cheng Chen, Chien Hui Wu, Ya Wen Cheng, Ming Hsien Wen, Chao Chin Chang, Tsao Cheng Huang
  • Patent number: 11339229
    Abstract: Disclosed are support-activators and catalyst compositions comprising the support-activators for polymerizing olefins in which the support-activator includes clay heteroadduct, prepare from a colloidal phyllosilicate such as a colloidal smectite clay, which is chemically-modified with a heterocoagulation agent. By limiting the amount of heterocoagulation reagent relative to the colloidal smectite clay as described herein, the smectite heteroadduct support-activator is a porous and amorphous solid which can be readily isolated from the resulting slurry by a conventional filtration process, and which can activate metallocenes and related catalysts toward olefin polymerization. Related compositions and processes are disclosed.
    Type: Grant
    Filed: January 27, 2020
    Date of Patent: May 24, 2022
    Assignee: FORMOSA PLASTICS CORPORATION, U.S.A.
    Inventors: Michael D. Jensen, Kevin Chung, Daoyong Wang, Wei-Chun Shih, Guangxue Xu, Chih-Jian Chen, Charles R. Johnson, II, Mary Lou Cowen
  • Patent number: 11331840
    Abstract: A lamination forming system includes a melt extruder, a nozzle head and a carrier unit. The melt extruder is configured to melt a plastic raw material into a plastic melt and to deliver the same. The nozzle head includes a sprue channel that has an inlet connected to the melt extruder for entry of the melt plastic into the sprue channel, and an outlet disposed distally from the inlet to deliver the plastic melt from the sprue channel. The carrier unit includes a slide table controllable to move relative to the nozzle head. The slide table is configure to carry the plastic melt outputted from the nozzle head.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: May 17, 2022
    Assignees: FORMOSA PLASTICS CORPORATION, NATIONAL KAOHSIUNG UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Chung-Ching Huang, Te-Wen Lee, Jen-Long Wu, Wen-Hao Kang, Ying-Cheng Weng
  • Patent number: 11305263
    Abstract: A method for preparing a supported carbon catalyst, the method includes at least the following steps: contacting a gas containing an organic silicon source with a silicon oxide-based material to obtain a precursor; contacting the precursor with a gas containing an organic carbon source to obtain the supported carbon catalyst. The temperature and energy consumption of the chemical vapor deposition of heteroatom-containing carbon material on silica-based materials can be greatly reduced in this method, and the cost of the catalyst can be effectively reduced.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: April 19, 2022
    Assignees: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES, FORMOSA PLASTICS CORPORATION
    Inventors: Jinming Xu, Sisi Fan, Yanqiang Huang, Tao Zhang, Chin Lien Huang, Wan Tun Hung, Yu Cheng Chen, Chien Hui Wu, Ya Wen Cheng, Ming Hsien Wen, Chao Chin Chang, Tsao Cheng Huang
  • Publication number: 20210284779
    Abstract: Exfoliated nanoplatelets functionalized with a non-polar moiety, such as an ethylene or propylene derived polymer, are useful for forming composites, films, and polymer blends.
    Type: Application
    Filed: March 16, 2021
    Publication date: September 16, 2021
    Applicants: The Texas A&M University, Formosa Plastics Corporation
    Inventors: Hung-Jue Sue, Joseph Baker, Mingzhen Zhao, Hong-Mao Wu, Wen-Hao Kang, Jen-Long Wu
  • Patent number: 11117995
    Abstract: The present invention relates to a polypropylene composition comprising a long chain branched polymer having high melt strength. The process for preparing the corresponding polypropylene having composition is provided comprising blending a propylene base polymer with a unsaturated polyfunctional poly(alkylsiloxane), a polyfunctional acrylate coagent, an initiator, additives such as stabilizer, acid neutralizer and antioxidants, and reactive extruding the blend to form a branched polymer composition bridged by siloxane units.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: September 14, 2021
    Assignee: Formosa Plastics Corporation, U.S.A.
    Inventors: Chaowei Feng, Ming-Yung Lee, Honglan Lu
  • Publication number: 20210252489
    Abstract: A method for preparing a supported carbon catalyst, the method includes at least the following steps: contacting a gas containing an organic silicon source with a silicon oxide-based material to obtain a precursor; contacting the precursor with a gas containing an organic carbon source to obtain the supported carbon catalyst. The temperature and energy consumption of the chemical vapor deposition of heteroatom-containing carbon material on silica-based materials can be greatly reduced in this method, and the cost of the catalyst can be effectively reduced.
    Type: Application
    Filed: April 30, 2019
    Publication date: August 19, 2021
    Applicants: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES, FORMOSA PLASTICS CORPORATION
    Inventors: Jinming XU, Sisi FAN, Yanqiang HUANG, Tao ZHANG, Chin Lien HUANG, Wan Tun HUNG, Yu Cheng CHEN, Chien Hui WU, Ya Wen CHENG, Ming Hsien WEN, Chao Chin CHANG, Tsao Cheng HUANG
  • Publication number: 20210230318
    Abstract: Disclosed are support-activators and catalyst compositions comprising the support-activators for polymerizing olefins in which the support-activator includes clay heteroadduct, prepare from a colloidal phyllosilicate such as a colloidal smectite clay, which is chemically-modified with a heterocoagulation agent. By limiting the amount of heterocoagulation reagent relative to the colloidal smectite clay as described herein, the smectite heteroadduct support-activator is a porous and amorphous solid which can be readily isolated from the resulting slurry by a conventional filtration process, and which can activate metallocenes and related catalysts toward olefin polymerization. Related compositions and processes are disclosed.
    Type: Application
    Filed: January 27, 2020
    Publication date: July 29, 2021
    Applicant: Formosa Plastics Corporation, U.S.A.
    Inventors: Michael D. Jensen, Kevin Chung, Daoyong Wang, Wei-Chun Shih, Guangxue Xu, Chih-Jian Chen, Charles R. Johnson, II, Mary Lou Cowen
  • Patent number: 10987909
    Abstract: The present invention provides a method of laminating a film for a dye-sensitized cell. First, a composite film is taken by a robotic arm, in which the composite film includes a release layer, a protective layer and a hot glue layer between the release layer and the protective layer, and the release layer is removed by the robotic arm. Then, the hot glue layer is precisely attached to a substrate by a target positioning step. Next, the protective layer is removed by the robotic arm.
    Type: Grant
    Filed: October 2, 2019
    Date of Patent: April 27, 2021
    Assignee: FORMOSA PLASTICS CORPORATION
    Inventors: Ching-Fu Chen, Hao-Wei Chen, Kun-Tai Ho, Wan-Tun Hung, Po-Min Chen, Liang-Kun Huang, Chih-Chou Chang, Yung-Liang Tung, Po-Tsung Hsiao, Ming-De Lu
  • Patent number: 10954324
    Abstract: What is disclosed is a method for preparing a catalyst system and a catalyst system for polymerizing or copolymerizing an ?-olefin. Catalyst component (A) is obtained by a process of reacting a magnesium complex (A-1) containing acid salts of group IB-VIIIB elements formed by contacting a magnesium halide with an acid salt solution of group IB-VIIIB metals or spherical particles adducts, an internal electron donor (A-2) of diester or diether or composite compounds, and a titanium compound (A-3). The catalyst compound (A) is contacted with a silicon compound (B) and an organoaluminium compound (C) to complete the catalyst system providing a good balance of catalyst performance in terms of activity and stereo-specificity.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: March 23, 2021
    Assignee: Formosa Plastics Corporation, U.S.A.
    Inventor: Demin Xu
  • Publication number: 20200346195
    Abstract: A catalyst for preparing chloroethylene by cracking 1,2-dichloroethane and a preparation and regeneration method thereof are disclosed in the present application. A catalyst for preparing chloroethylene by cracking 1,2-dichloroethane includes a carrier and a nitrogen-containing carbon as an active component of the catalyst with the nitrogen-containing carbon being loaded on the carrier. The method for preparing the catalyst includes: supporting an organic matter on an inorganic porous carrier and then performing a carbonization-nitridation process by pyrolysis in an atmosphere containing the nitrogen-containing compound. The method for regenerating the catalyst includes: calcinating the catalyst with deactivated carbon deposit in an oxidizing atmosphere to remove all the carbonaceous portions on the surface, and repeating the above preparation process of the catalyst.
    Type: Application
    Filed: April 30, 2019
    Publication date: November 5, 2020
    Applicants: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES, FORMOSA PLASTICS CORPORATION
    Inventors: Jinming XU, Sisi FAN, Yanqiang HUANG, Tao ZHANG, Chin Lien HUANG, Wan Tun HUNG, Yu Cheng CHEN, Chien Hui WU, Ya Wen CHENG, Ming Hsien WEN, Chao Chin CHANG, Tsao Cheng HUANG
  • Patent number: 10822438
    Abstract: Disclosed are a catalyst component for olefin polymerization comprising titanium, magnesium, a halogen, internal donors, in combination with a silane and oxalic acid diamides of the following formula: An olefin polymerization catalyst system consisting of the solid catalyst component, an organoaluminum compound, and an optional external electron donor compound is also disclosed. Employment of both oxalic acid diamides and silane component in the presence of internal electron donors as an elements of solid Ziegler-Natta type catalyst composition enhances stereo-specificity while maintaining excellent catalyst activity and hydrogen response, in which the modified catalyst composition produces polypropylene with good productivity and higher stereo-specificity than catalyst composition without such modification.
    Type: Grant
    Filed: May 9, 2017
    Date of Patent: November 3, 2020
    Assignee: Formosa Plastics Corporation
    Inventors: Gapgoung Kong, Lei Zhang, Chih-Jian Chen, Yiqun Fang, Demin Xu, Guangxue Xu
  • Patent number: 10731024
    Abstract: A superabsorbent polymer includes polymer particles, surface cross-linking agents and particles made of silicon-containing inorganic salt. The polymer particles have cross-linking inside the polymer particles. The surface cross-linking agents are covalently bound to the surface of the polymer particles so as to constitute a surface cross-linked region at the surface of each said resin particle, and the particles made of silicon-containing inorganic salt cover the surface of the polymer particles.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: August 4, 2020
    Assignee: FORMOSA PLASTICS CORPORATION
    Inventors: Zhong-Yi Chen, Yu-Yen Chuang, Li-Han Huang, Yu-Sam Lin, Feng-Yi Chen, Ching-Hua Liang