Patents Assigned to FRIEDRICH-ALEXANDER-UNIVERSITAT ERLANGEN-NÜRNBERG
  • Patent number: 9186087
    Abstract: A method for compensating cardiac and respiratory motion in atrial fibrillation ablation procedures includes (a) simultaneously determining a position of a circumferential mapping (CFM) catheter and a coronary sinus (CS) catheter in two consecutive image frames of a series of first 2-D image frames; (b) determining a distance between a virtual electrode on the CS catheter and a center of the CFM catheter for a first image frame of the two consecutive image frames, and for a second image frame of the two consecutive image frames; and (c) if an absolute difference of the distance for the first image frame and the distance for the second image frame is greater than a predetermined threshold, compensating for motion of the CFM catheter in a second 2-D image.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: November 17, 2015
    Assignees: Siemens Aktiengesellschaft, Friedrich-Alexander-Universität Erlangen-Nürnberg
    Inventors: Rui Liao, Alexander Benjamin Brost, Wen Wu, Terrence Chen, Joachim Hornegger, Martin Willibald Koch, Norbert Strobel, Andreas Wimmer
  • Publication number: 20140378827
    Abstract: A method and system for motion estimation modeling for cardiac and respiratory motion compensation is disclosed. Specifically, a coronary sinus catheter is tracked in a plurality of frames of a fluoroscopic image sequence; and cardiac and respiratory motion of a left atrium is estimated in each of the plurality of frames based on tracking results of the coronary sinus catheter using a trained motion estimation model.
    Type: Application
    Filed: January 18, 2013
    Publication date: December 25, 2014
    Applicants: SIEMENS AKTIENGESELLSCHAFT, FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG
    Inventors: Alexander Benjamin Brost, Sebastian Kaeppler, Martin Ostermeier, Norbert Strobel, Wen Wu, Terrence Chen
  • Publication number: 20140345119
    Abstract: The invention relates to a method for producing substantially two-dimensional flat coils (28), wherein at least two cover plates (2, 3) that each have a cover surface (20) and a former (4) having a former surface (21) that is smaller than the cover surfaces are provided, wherein the former is releasably clamped between the two cover plates, such that at least some sections of lateral support surfaces (10) are formed by projecting sections (9) of the cover plates, wherein a coil conductor (25) for the geometry of the flat coil (28) is wound along the circumference of the former between the cover plates, and wherein the wound coil conductors (25) are fixed locally relative to one another through cut-outs (16) in at least one of the cover plates. The invention further relates to a corresponding winding device (1, 11, 22).
    Type: Application
    Filed: August 7, 2012
    Publication date: November 27, 2014
    Applicant: FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG
    Inventors: Jan Tremel, Florian Risch
  • Publication number: 20140330410
    Abstract: The invention relates to a system for supporting an exercise movement, comprising an object, a detection device (101) for detecting an actual position of the object, a determination device (103) for determining a desired position of the object, and a display device (105) for displaying information on the desired position if the actual position and the desired position are different from each other.
    Type: Application
    Filed: September 20, 2011
    Publication date: November 6, 2014
    Applicant: Friedrich-Alexander-Universität Erlangen-Nürnberg
    Inventor: Matthias Lochmann
  • Publication number: 20140225066
    Abstract: An electronic device (1) includes a semiconductor substrate (3) having a front surface (7), a first electrode (8) and a second electrode (9) disposed on the front surface (7) of the substrate (3), wherein the first electrode (8) and the second electrode (9) each have at least one epitaxial graphene monolayer (10). The at least one epitaxial graphene monolayer (10) of the first electrode (8) forms an ohmic contact with the substrate (3) and the at least one epitaxial graphene monolayer (10) of the second electrode (9) forms a Schottky barrier with the substrate (3).
    Type: Application
    Filed: June 18, 2012
    Publication date: August 14, 2014
    Applicant: FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG
    Inventors: Heiko B. Weber, Michael Krieger, Stefan Hertel, Florian Krach, Johannes Jobst, Daniel Waldmann
  • Patent number: 8771172
    Abstract: In a sensor system and a corresponding method for image capture of an object, an imaging sensor is arranged in a recording area of an optical sensor, the recording area being defined for the object, in such a way as to be essentially stationary relative to said object. By means of an evaluation unit, relative movements between the imaging sensor and the object can be derived from the recorded image data of the optical sensor, and a three-dimensional object image can be reconstructed from the imaging data as a function of the relative movements. When determining the relative movements, it is in particular possible as well to detect relative movements caused by the object's own motion which can be taken into account when reconstructing the object image. As a result, a high image quality of the object image is achieved.
    Type: Grant
    Filed: February 1, 2010
    Date of Patent: July 8, 2014
    Assignees: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., Friedrich-Alexander-Universität Erlangen-Nürnberg
    Inventors: Tobias Bergen, Christian Münzenmayer, Christian Winter, Thomas Wittenberg
  • Patent number: 8659476
    Abstract: A device and method for determining a distance and/or orientation of a movable object includes a transmitter that is located on the object and a receiver. One of the transmitter and the receiver has an antenna having a known polarization plane. The other of the transmitter and the receiver has a counterclockwise circular polarized antenna and a clockwise circular polarized antenna.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: February 25, 2014
    Assignees: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V., Friedrich-Alexander-Universität Erlangen-Nürnberg
    Inventors: Andreas Eidloth, Hans Adel, Jörn Thielecke, Alexander Popugaev
  • Patent number: 8098795
    Abstract: An X-ray detector for recording an image of an object that is moving relative to the detector includes a plurality of detector modules which are adjacently disposed so that they partially overlap. Using the detector modules, a TDI (Time Delayed Integration) is performed within each detector module. Subsequently an evaluation unit determines corrected measurement values of an overlap region by adding the measured values from the individual detector modules in the overlap region.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: January 17, 2012
    Assignee: Friedrich-Alexander-Universität Erlangen-Nürnberg
    Inventors: Tristan Nowak, Willi A. Kalender, Harry Schilling
  • Patent number: 8090111
    Abstract: A signal separator, a method and computer product for determining a first output signal describing an audio content of a useful-signal source in a first microphone signal, and for determining a second output signal describing an audio content of the useful-signal source in a second microphone signal.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: January 3, 2012
    Assignees: Siemens Audiologische Technik GmbH, Friedrich-Alexander-Universität Erlangen-Nürnberg
    Inventors: Robert Aichner, Herbert Buchner, Walter Kellermann
  • Patent number: 7601937
    Abstract: A photon detector has a photocathode for the photon-induced triggering of measuring electrons. Spatial position information is supplied by an at least one-dimensional electron-detector pixel array. An electron optics unit serves for guiding the measuring electrons to the array. Each pixel (19) has an electronic converter unit (20) for converting an analog measuring signal of the pixel (19) into a digital measuring signal, which incorporates a discriminator for background suppression. An electronic post-processing unit (39) serves for processing the digital measuring signal. The converter unit (20) of each pixel (19) has at least one clock generator (36), as well as at least one counter (29, 30), which is in signal connection with the clock generator (36) and discriminator (27) for generation of a digital timing signal.
    Type: Grant
    Filed: June 25, 2007
    Date of Patent: October 13, 2009
    Assignee: Friedrich-Alexander-Universität Erlangen-Nürnberg
    Inventors: Gisela Anton, Thilo Michel