Abstract: An ATM network switch and method of utilization for adaptively providing integrated services therein is disclosed. In providing such integrated services, if the allocated bandwidth for one connection has been consumed, or if the connection is not entitled to allocated bandwidth, the connection can optionally use dynamic bandwidth arbitration, or a combination of both allocated and dynamic. The switch includes an input port processor, a bandwidth arbiter, and an output port processor. Cells are transmitted from the input to the output, under the control of respective port processors and the bandwidth arbiter. Flow control is implemented on a per-connection basis. Individual queues are then assigned to traffic type groups in order to provide traffic type flow control. Based upon prioritization information associated with the cell at the input, cells are prioritized and transmitted from the output, with each cell maintained in the same order, relative to other cells on a connection, in which it was received.
Abstract: An improved method and apparatus for recognizing, classifying and processing frames received at a frame processor in a computer network is disclosed. Following receipt of a frame at an input port of a frame processor, source and destination addresses are parsed from the frame. A plurality of lookup tables are provided in a memory, each of which contains a search field and a classification key field. Source or destination addresses are stored in the respective search fields along with other information associated with the frame and a compact classification key is stored in the corresponding classification key field. Searches are performed of the respective search fields within the respective lookup tables to determine whether a match exists between the each of the destination and source addresses and other information and the search field within the lookup tables. In the event the searches yield a match, a classification key associated with each respective address is retrieved.
Abstract: A heat exchanger for passive heat exchange between a weather-tight, sealed electronics cabinet for exchanging heat between a heat generating side of a separating plate and an exhaust side of the separating plate is provided. The heat exchanger includes at least one layer of heat exchanger fins running in a first direction, on the heat generating side of the separating plate. The heat exchanger also includes a plurality of layers of heat exchanger fins running in a second direction, generally perpendicular to the first direction, on the exhaust side of the separating plate. The heat exchangers are sealed with a continuous gasket in the top of a cabinet housing electronic equipment.