Abstract: A transceiver configured to receive and transmit data in a content oriented network (CON), and a processor configured to obtain a jointly provisioned routing and storage solution resolved according to an aggregated data flow equation generating a conventional data flow of content on a link to a destination, and an aggregated data flow of the content on the link, and a storage indicator, and to determine whether to store and transmit the data.
Abstract: A user equipment (UE) comprising a display, an input device configured to receive user input, a visual input configured to capture motion or stop photography as visual data, and a processor coupled to the display, input device, and visual input and configured to, receive visual data from the visual input, overlay a model comprising network data onto the visual data to create a composite image, wherein the model is aligned to the visual data based on user input received from the input device, and transmit the composite image to the display.
Abstract: An apparatus for decoding a media stream, wherein the apparatus comprises a memory module, a processor module coupled to the memory module, wherein the memory module contains instructions that when executed by the processor cause the apparatus to perform the following: receive a media stream comprising a segment signaling information and a plurality of segments, wherein the plurality of segments comprises encoded and unencoded segments, wherein the segment signaling information comprises identification of at least two segment groups each comprising at least one segment, identify at least one segment group using the segment signaling information in the media stream, identify at least one segment decoding algorithm for the at least one segment group, identify at least one decoding key for the at least segment group, and decode each encoded segment within the at least segment group using the at least segment decoding algorithm and the at least one decoding key.
Abstract: System and method of automating client development for an application programming interface (API). An embodiment includes an apparatus capable of receiving information regarding a target application resource accessible by an API, and of generating a selected sequence of API calls based on weighted transitions in an API model representing resources needed for a client to perform interactions with the API. The apparatus is able to automatically generate a client program for interacting with the API according to a sequence of API calls. Additionally, methods are described for converting a model of an API into a directed, weighted graph, allowing determination of a selected sequence of API calls to access a target application resource. The API may be a Representational State Transfer API (REST API) implemented for a software defined network (SDN).
Abstract: A method for operating an access point includes identifying one or more stations to receive a transmission from the access point, and generating a traffic indicator map (TIM) for the one or more stations identified, the TIM in accordance with a TIM generating rule, the TIM identifying at least an offset length and a number of entries. The method further includes broadcasting a beacon carrying the TIM to the one or more stations identified, the one or more stations configured to decode the beacon according to the TIM generating rule.
Abstract: Embodiments are provided to support device-to-device (D2D) communications in a time-division duplexing (TDD) communications system, and ensure that D2D discovery signals are transmitted by user devices on an uplink subframe when there is a TDD frame configuration change. In an embodiment, a user device receives form the network a TDD frame configuration selected from a set of available TDD frame configurations according to the TDD configuration. The device further receives a D2D discovery configuration for a discovery time interval. The user device then allocates a transmission resource a D2D discovery signal within the discovery time interval according to the D2D discovery configuration. The user device is also configured to receive from another device a second D2D discovery signal during the discovery time interval in accordance with the TDD configuration and the D2D discovery configuration.
Type:
Grant
Filed:
March 5, 2014
Date of Patent:
July 19, 2016
Assignee:
Futurewei Technologies, Inc.
Inventors:
Philippe Sartori, Vipul Desai, Mazin Al-Shalash, Weimin Xiao, Anthony C. K. Soong
Abstract: A segment based switching architecture with hybrid control providing flow control in software defined networking (SDN). An SDN controller controls top tier macro-flows and virtual segment backbone connections in a network, and an SDN network edge device controls and manages micro-flows that are attached to the SDN network edge device. The SDN network edge device controls and manages the micro-flows locally without using a southbound API. The SDN network edge device learns flow information such as source information and incoming port information for all unknown micro-flows belonging to defined segments, and builds a virtual segment topology database for each segment. The SDN network edge device employs flow computation algorithms and micro-flow management in a distributed fashion. The virtual segment backbone connections are naturally exposed to the SDN controller through provisioning.
Abstract: A next-generation base station can update an uplink-downlink (UL/DL) configuration of a cell more frequently than legacy user equipments (UEs) are configured to recognize UL/DL updates while preventing non-compliant uplink transmissions in downlink subframes. For instance, a next-generation base station can restrict updates to the uplink-downlink configuration such that uplink timeslots previously allocated for random access channel (RACH) transmission opportunities by legacy UEs remain configured for uplink transmission. Alternatively, the next-generation base station can restrict the allocation of RACH transmission opportunities of legacy UEs to timeslots that are statically configured for uplink transmission. Notably, such a restriction may be selectively applied to legacy UEs, so as to not limit the performance of next-generation UEs.
Abstract: System and method embodiments are provided for transmitter receive band noise calibration in a wireless device. In an embodiment, a method in a wireless device for transmitter receive band noise calibration includes transmitting, by the wireless device, a signal; iteratively measuring, by the wireless device, a receive band noise caused by the transmitted signal, determining a corrected transmitter parameter for the transmitted signal, and transmitting a corrected signal using the corrected transmitter parameter until a reduced receive band noise is achieved; and setting a final transmitter parameter according to the corrected transmitter parameter corresponding to the reduced receive band noise.
Abstract: An optical splitter has a main branch coupled to a number of tributary branches. The main branch includes a light-absorptive core and a light-reflective grating. The absorptive core can absorb light arriving from the tributary branches and transmit light arriving from the main branch to the reflective grating. The reflective grating can reflect light from the main branch back through the absorptive core to the main branch. Light arriving from the tributary branches exchanges mode with light reflected by the reflective grating.
Abstract: A method and technique for autonomous selection of a Data Center Cluster (DCC) for fulfilling a cloud computing service request, including a technique for grouping data centers (DCs) in a cloud network according to a ranking of eligible DCCs based on selection criteria. In various embodiments, the selection criteria may include a cluster performance metric, a cluster resource equivalence metric, a balance of resource performance metric, a DCC load index, or combination thereof. Other aspects include techniques for computing/determining each of the selection criteria.
Abstract: Embodiments are provided herein for enabling buffer status reporting for Multi-stream aggregation (MSA) in wireless networks. In an embodiment, a user equipment (UE) receives from a network, a configuration regarding one of enabling and disabling cross-node buffer status reporting. The UE further receives a first uplink grant from a first network node, and obtains a buffer status intended for a second network node. Upon enabling cross-node buffer status reporting according to the configuration, the UE transmits, in the first uplink grant to the first network node, the buffer status intended for the second network node. The first network node receives, from the UE, the buffer status intended for the second network node, and determines whether to forward the buffer status to the second network node according to the configuration regarding buffer status forwarding previously received at the first network node.
Abstract: An apparatus comprising a path computation element (PCE) configured for at least partial impairment aware routing and wavelength assignment (RWA) and to communicate with a path computation client (PCC) based on a PCE protocol (PCEP) that supports path routing, wavelength assignment (WA), and impairment validation (IV). The PCEP comprises at least one operation selected from the group consisting of a new RWA path request operation and a path re-optimization request operation. Also disclosed is a network component comprising at least one processor configured to implement a method comprising establishing a PCEP session with a PCC, receiving path computation information comprising RWA information and constraints from the PCC, and establishing impairment aware RWA (IA-RWA) based on the path computation information and a private impairment information for a vendor's equipment.
Abstract: An apparatus for performing video segmentation, including image sensors of a first type, auxiliary sensors of a second type, and a processor executing computer-executable instructions stored in memory. The instructions include capturing RGB image video data from a plurality of first image sensors; capturing second video data from a plurality of second, auxiliary sensors; for a reference frame, determining an initial segmentation map by segmenting a first object-of-interest from a background from said second video data; determining a history of segmentation information on a pixel-by-pixel basis, wherein a length of said history is based on motion data for the object-of-interest; generating a refined segmentation map by refining on a pixel-by-pixel basis a corresponding value of said initial segmentation map based on said history of segmentation information; and performing RGB segmentation on a corresponding reference frame of said RGB image video based on said refined segmentation map.
Abstract: An apparatus comprises a receiver configured to receive first messages, a processor coupled to the receiver and configured to process the first messages, determine transmission powers associated with the first messages, and generate a transmission scheme based on the transmission powers, and a transmitter coupled to the processor and configured to transmit a second message comprising the transmission scheme. An apparatus comprises a transmitter configured to transmit a first message indicating a transmission power of the apparatus, a receiver configured to receive a second message, wherein the second message assigns to the apparatus a wavelength based on the transmission power, and a processor coupled to the transmitter and the receiver and configured to process the second message, and instruct the transmitter to transmit a third message at the wavelength.
Abstract: A Dynamic Adaptive Streaming over Hypertext Transport Protocol (DASH) server component is disclosed. The DASH server component may comprise a memory, a processor coupled to the memory, and a transmitter coupled to the processor. The processor may be configured to generate one or more keys containing content protection information for media content, associate the keys with one or more segments of media content, store the keys in a DASH metadata track in the memory, and generate a media presentation description (MPD) specifying an association between the keys and the segments of media content. The transmitter may be configured to transmit the keys to at least one client independently of transmitting the media content and transmit the MPD to the at least one client.
Abstract: In one embodiment, a method of serving media includes receiving user profiles from a layer3 node in an access network, and receiving a request to serve media content to a user equipment. The user profiles include information relating to user account and/or network characteristics of the user equipment. The method further includes using an user equipment information from the user profiles, assigning a first media server from a hierarchical set of media servers to serve the user equipment if the media content to be served is cacheable. The hierarchical set of media servers include a plurality of first type of media servers deployed in a plurality of layer2 (L2) access networks. The user equipment is coupled to a content delivery network through a layer2 access network of the plurality of layer2 access networks.
Type:
Grant
Filed:
May 11, 2011
Date of Patent:
July 5, 2016
Assignee:
Futurewei Technologies, Inc.
Inventors:
Sanqi Li, Tao Qian, Houxiao Han, Hongbo Tian, Kui Lin
Abstract: Embodiments are provided for supporting multiple Radio Access Technologies (RATs) using a common backhaul transport network. A relay node is configured to instantiate a virtual-user equipment (V-UE) layer for a UE, upon determining that the UE uses a different RAT than the backhaul transport network. A connection is then established between the V-UE layer and a V-UE gateway using a pre-existing radio interface between the relay node and a base station. Upon receiving data from the UE, the relay node translates the data into a RAT format supported by the backhaul transport network, and sends the data on the connection via the base station, wherein the RAT format of the UE is transparent to the base station. A generic access network controller is also configured to connect and exchange signaling with the relay node to establish a service for the UE and configure radio resource on the relay node.
Abstract: An inverter comprises a first boost apparatus, a second boost apparatus, a first converting stage coupled to the first boost apparatus, wherein the first converting stage is configured such that a first three-level conductive path is formed when a voltage at a dc source is greater than an instantaneous value of a voltage at an output of the inverter and a first five-level conductive path is formed when the instantaneous value of the voltage at the output of inverter is greater than the voltage at the dc source.
Abstract: A method performed by a computer for managing display of pop-up notifications when the displayed content of the computer is being shared. A notification request from an application running on the computer is received by the computer. The computer determines that displayed content of the computer is viewable for multiple users. Based upon the determining, the computer blocks display of the pop-up notification to prevent leaking of sensitive information to other users.