Patents Assigned to GA-TEK Inc.
  • Patent number: 6183607
    Abstract: An electrodeposition cell for electrodepositing metal onto a surface of a rotating drum that is partially immersed in an electrolytic solution. The cell includes an anode comprised of a main anode body portion and an anode extension portion. The main anode body portion has an arcuate main anode body surface having a radius of curvature slightly larger than the radius of curvature of the drum. The main anode body portion is totally immersed in the electrolytic solution adjacent the drum wherein a generally uniform gap is formed therebetween. The anode extension portion has an anode extension surface facing the drum and at least one opening extending therethrough. The anode extension portion is disposed within the electrolytic solution wherein a portion thereof extends above the electrolytic solution and the electrolytic solution can flow through the opening.
    Type: Grant
    Filed: June 22, 1999
    Date of Patent: February 6, 2001
    Assignee: GA-TEK Inc.
    Inventors: Sidney J. Clouser, Jiangtao Wang, John C. Briggs, Michael L. Stevens
  • Patent number: 6168703
    Abstract: This invention relates to a process for applying a stabilization layer to at least one side of copper foil comprising contacting said side of said copper foil with an electrolyte solution comprising zinc ions, chromium ions and at least one hydrogen inhibitor. This invention also relates to copper foils treated by the foregoing process, and to laminates comprising a dielectric substrate and copper foil treated by the foregoing process adhered to said dielectric substrate.
    Type: Grant
    Filed: March 1, 1999
    Date of Patent: January 2, 2001
    Assignee: GA-TEK Inc.
    Inventors: Chin-Ho Lee, Edward Czapor
  • Patent number: 6163208
    Abstract: A phase shift keyed carrier recovery and demodulator circuit which includes a phase detector and subsequent feedback control loop circuitry which maintains an initial phase relationship. By comparing an incoming phase modulated carrier with the multiple phase outputs of a local oscillator, the circuit is able to generate a correcting signal which allows coherent phase tracking of the incoming phase modulated carrier. The phase detector produces a correction signal which allows the circuit to phase lock any two sequential phases of the locally generated phase outputs to phase positions on either side of the phase of the incoming phase modulated carrier. Once the circuit has obtained carrier phase lock, the multiple phases produced by the local oscillator will remain fixed (without phase change) relative to the initial detected phase of the incoming phase modulated carrier.
    Type: Grant
    Filed: December 15, 1998
    Date of Patent: December 19, 2000
    Assignee: Ga-Tek Inc.
    Inventors: Craig L. Christensen, Kenneth L. Reinhard, Andrei Rudolfovich Petrov
  • Patent number: 6146480
    Abstract: Method of forming a flexible circuit laminate for use in the production of flexible circuits, comprising the steps of electrodepositing a continuous layer of copper on a first side of a generally continuous strip of polyimide having a layer of metal on the first side, modifying a second side of the polyimide strip to increase the surface energy thereof, applying a preformed adhesive film on the second side of the generally continuous strip of polyimide, the adhesive strip being formed of a substantially uncured polymeric material, and curing the adhesive film wherein at least the outmost layer of the adhesive film is only partially cured.
    Type: Grant
    Filed: March 12, 1999
    Date of Patent: November 14, 2000
    Assignee: GA-TEK Inc.
    Inventors: Michael A. Centanni, Mark Kusner
  • Patent number: 6132851
    Abstract: This invention relates to an adhesive composition, comprising: (A) at least one phenolic resole resin; and (B) the product made by reacting (B-1) at least one difunctional epoxy resin, with (B-2) at least one compound represented by the formula ##STR1## wherein in Formulae (I) and (II): G, T and Q are each independently functional groups selected from the group consisting of COOH, OH, SH, NH.sub.2, NHR.sup.1, (NHC(.dbd.NH)).sub.m NH.sub.2, R.sup.2 COOH, NR.sup.1.sub.2, C(O)NHR.sup.1, R.sup.2 NR.sup.1.sub.2, R.sup.2 OH, R.sup.2 SH, R.sup.2 NH.sub.2 and R.sup.2 NHR.sup.1, wherein R.sup.1 is a hydrocarbon group, R.sup.2 is an alkylene or alkylidene group and m is a number in the range of 1 to about 4; T can also be R.sup.1, OR.sup.1 or SO.sub.2 C.sub.6 H.sub.4 --NH.sub.2 ; and Q can also be H. The invention also relates to copper foils having the foregoing adhesive composition adhered to at least one side thereof to enhance the adhesion between said foils and dielectric substrates.
    Type: Grant
    Filed: June 28, 1994
    Date of Patent: October 17, 2000
    Assignee: GA-TEK Inc.
    Inventor: Charles A. Poutasse
  • Patent number: 6132589
    Abstract: This invention relates to a treated copper foil, comprising: a copper foil with a layer of zinc oxide adhered to the base surface of at least on side of said copper foil, said layer of zinc oxide having a thickness of about 3 .ANG. to about 80 .ANG.; and a layer of a trivalent chromium oxide adhered to said layer of zinc oxide. In one embodiment, the foil has a layer of a silane coupling agent adhered to the layer of trivalent chromium oxide. The invention also relates to a process for applying the layer of zinc oxide and the layer of trivalent chromium oxide to the copper foil. The invention also relates to laminates comprising a dielectric substrate and the foregoing copper foil adhered to the substrate. In one embodiment, the dielectric substrate is comprised of an epoxy resin made with a curing agent that is other than an amine curing agent.
    Type: Grant
    Filed: September 10, 1998
    Date of Patent: October 17, 2000
    Assignee: GA-TEK Inc.
    Inventors: Thomas J. Ameen, Edward Czapor
  • Patent number: 6117536
    Abstract: The present invention relates to an adhesion promoting layer which exhibits high temperature stability and high peel strengths when used in a multi-layer structure for a printed circuit board. More specifically, the present invention relates to a multi-layer structure, containing a prepreg layer wherein the prepreg layer is made from an epoxy resin and a non-amine curing agent; and an adhesion promoting layer comprising a nitrogen containing silane compound. The present invention also relates to a multi-layer structure containing a metal foil layer; an epoxy prepreg layer wherein the epoxy prepreg layer is made from an epoxy resin and a non-amine curing agent comprising at least one of an acid, an anhydride, an alkoxide, a phenoxide, a polymeric thiol and a phenol; and an adhesion promoting layer comprising a nitrogen containing silane compound, wherein the adhesion promoting layer is between the metal foil layer and the epoxy prepreg layer.
    Type: Grant
    Filed: September 10, 1998
    Date of Patent: September 12, 2000
    Assignee: GA-TEK Inc.
    Inventor: Charles A. Poutasse
  • Patent number: 6103135
    Abstract: A method of forming a multi-layer laminate from a plurality of individual laminates comprised of copper clad on a polyimide.
    Type: Grant
    Filed: March 26, 1999
    Date of Patent: August 15, 2000
    Assignee: GA-TEK Inc.
    Inventors: Mark Kusner, Michael A. Centanni, Joseph A. Potkonicky, Jr.
  • Patent number: 6056185
    Abstract: A method of securing a metal lead of a polymer battery to a flexible circuit, comprising the steps of positioning a metal lead of a polymer electrolyte battery onto a connection pad of a circuit; clamping the metal lead and the connection pad between two weld fixtures of an ultrasonic welder; compressing the metal lead and connection pad between the two weld fixtures to establish a pressure of about 44.9 psi to about 30.8 psi; and vibrating the weld fixtures at a frequency of about 20 kHz for about 0.1 seconds to about 2.0 seconds.
    Type: Grant
    Filed: March 18, 1999
    Date of Patent: May 2, 2000
    Assignee: GA-TEK Inc.
    Inventors: Mark L. Daroux, Robert Reichert, John A. Centa, David A. Glover, Shiuh-Kao Chiang
  • Patent number: 6048646
    Abstract: A method of treating a copper current collector (copper mesh and/or copper foil) for use in Li-ion and/or Li-ion polymer batteries, comprising the steps of: positioning a copper current collector within an electrolytic solution adjacent an anode plate, the electrolytic solution comprised of about 2 to about 25 grams/liter of Cu.sup.+2, and about 30 to about 100 grams/liter of H.sub.2 SO.sub.4 ; energizing the system to have a predetermined current density; maintaining the current density of the system for about 0.5 to about 3.0 minutes; and removing the copper current collector from the electrolyte solution and rinsing the same.
    Type: Grant
    Filed: July 21, 1998
    Date of Patent: April 11, 2000
    Assignee: GA-TEK Inc.
    Inventors: Xuekun Xing, Wan Jun Fang, James R. Winchester, III
  • Patent number: 5939043
    Abstract: A method of forming lithium manganese oxide spinel, comprising the steps of combining predetermined amounts of lithium carbonate powder and manganese dioxide powder, the powders having predetermined surface areas; mixing the lithium carbonate and manganese dioxide for about 0.5 hours to about 2.0 hours in a manner so as to thoroughly mix the powders, but not to significantly increase the surface area of the powders; increasing the temperature of the mixture from approximately room temperature to a calcining temperature between about 700.degree. C. to about 900.degree. C.; maintaining the calcining temperature of the mixture between about 700.degree. C. to about 900.degree. C. for about 7 hours to about 13 hours; reducing the temperature of the mixture from the calcining temperature to about 500.degree. C. at a cooling rate between about 10.degree. C./hour to about 120.degree. C./hour; and cooling the mixture from 500.degree. C. to room temperature.
    Type: Grant
    Filed: June 26, 1998
    Date of Patent: August 17, 1999
    Assignee: GA-TEK Inc.
    Inventor: Masataka Yahagi