Patents Assigned to Gen-Probe Incorporated
  • Patent number: 11198913
    Abstract: Provided are compositions, kits, and methods for the identification of Listeria. In certain aspects and embodiments, the compositions, kits, and methods may provide improvements in relation to specificity, sensitivity, and speed of detection.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: December 14, 2021
    Assignee: GEN-PROBE INCORPORATED
    Inventors: Michael R. Reshatoff, Kristin W. Livezey, James J. Hogan
  • Patent number: 11179726
    Abstract: An assembly for storing sample processing consumables can include a cover and a tray. The cover defines a cover cavity. The tray defines a first plurality of wells. The tray includes a first portion received within the cover cavity such that a press fit is formed between a first tray surface of the first portion of the tray and a first cover surface of the cover defining the cover cavity, thereby releasably coupling the cover to the tray. Each of the first plurality of wells contains a sample processing consumable. The assembly can be used to load sample processing consumables into a sample processing instrument.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: November 23, 2021
    Assignee: GEN-PROBE INCORPORATED
    Inventor: Byron Knight
  • Patent number: 11162145
    Abstract: The invention provides a lysis reagent for lysing red blood cells, thereby releasing a target, such as RNA from a parasitic organism, in a form suitable for analysis. The reagent includes at least ammonium chloride and an anionic detergent, and may include an anti-coagulant. The reagent serves to lyse red blood cells, protect the released target from degradation in the lysate, and is compatible with subsequent steps for analysis of the target such as target capture, amplification, detection, or sequencing.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: November 2, 2021
    Assignee: GEN-PROBE INCORPORATED
    Inventors: Jijumon Chelliserry, Kui Gao, Jeffrey M. Linnen
  • Patent number: 11162091
    Abstract: Disclosed herein are lysis reagents for lysing red blood cells, thereby releasing an analyte, such as RNA from a host or pathogen, in a form suitable for analysis. The reagent includes at least a buffer, a detergent and one or both of a chloride containing salt and an anti-coagulant. The reagent serves to lyse blood cells, protect the released analyte from degradation in the lysate, and is compatible with subsequent steps for analysis of the analyte such as target capture, amplification, detection, or sequencing.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: November 2, 2021
    Assignee: GEN-PROBE INCORPORATED
    Inventors: Kui Gao, Jijumon Chelliserry, Jeffrey Linnen
  • Publication number: 20210324445
    Abstract: A diagnostic system is configured to perform first and second, different nucleic acid amplification reactions. The system includes a bulk reagent container compartment configured to store first bulk reagent container containing a first bulk reagent for performing sample preparation processes with a first subset and a second subset of a plurality of samples and a second bulk reagent container containing a second bulk reagent for performing the first nucleic acid amplification reaction. The system includes a unit-dose reagent compartment storing a unit-dose reagent pack including unit-dose reagents for performing the second nucleic acid amplification reaction.
    Type: Application
    Filed: January 11, 2021
    Publication date: October 21, 2021
    Applicant: Gen-Probe Incorporated
    Inventors: David A. Buse, David Opalsky, Jason F. Rhubottom, Norbert D. Hagen, Jennifer L. Tidd
  • Publication number: 20210310734
    Abstract: A lyophilization nest and method of using the same is described herein. In various embodiments, the lyophilization nest is configured to support one or more receptacles each supporting one or more substances within an interior space of the lyophilization nest. The interior space may be in fluid communication with the exterior of the lyophilization nest through one or more vent holes extending through a surface of the lyophilization nest. Each of the one or more vent holes have a corresponding sealing element configured to selectively form an air-tight seal within the vent holes, such that a controlled environment may be maintained within the interior space when the ambient conditions surrounding the lyophilization nest are not lyophilization conditions. The one or more sealing elements may be operable while the lyophilization nest is positioned within a sealed lyophilizer by depressing the sealing elements into corresponding vent holes to form the air-tight seal.
    Type: Application
    Filed: June 11, 2021
    Publication date: October 7, 2021
    Applicant: Gen-Probe Incorporated
    Inventor: Byron J. KNIGHT
  • Patent number: 11136622
    Abstract: Nucleic acid oligomeric sequences and in vitro nucleic acid amplification and detection methods for detecting the presence of HAV RNA sequences in samples are disclosed. Kits comprising nucleic acid oligomers for amplifying and detecting HAV nucleic acid sequences are disclosed.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: October 5, 2021
    Assignee: GEN-PROBE INCORPORATED
    Inventors: James D. Carlson, Steven T. Brentano
  • Patent number: 11136617
    Abstract: A cap that is securable to a vial includes a plug configured for insertion into an open end of the vial. An upper portion of the cap defines a probe recess with an open top end and configured to receive a distal end of a probe of a pipettor inserted into the open top end, to frictionally secure the cap to an end of the probe. The cap includes a radially-oriented annular surface with one or more locking members depending from a periphery of the annular surface. The locking members are spaced from the plug and each locking member includes a radial locking groove and a radial locking ridge beneath the radial locking groove. A lip of the vial snaps into the radial locking groove above the radial locking ridge to secure the cap to the vial when the plug is inserted into the open end of the vial.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: October 5, 2021
    Assignee: GEN-PROBE INCORPORATED
    Inventors: Byron J. Knight, David A. Buse, Norbert D. Hagen, David Opalsky, Tyler Moore, Anita Prasad, Bruce Richardson
  • Publication number: 20210299664
    Abstract: A container includes a base with a top wall, a vessel depending from a top wall aperture in the top wall, a fluid retainer projecting above the top wall and surrounding the top wall aperture, and a skirt surrounding the vessel and including opposed grooves for gripping the container. A lid is disposed on a top end of the base and includes a cover wall with a lid aperture generally aligned with the top wall aperture of the base. A septum is disposed between the top wall of the base and the cover wall with a portion of the septum disposed between the lid aperture and the top wall aperture. Fluid retainer/return structure is configured to prevent fluid deposited on the septum from dripping off the container and to allow at least a portion of the fluid deposited on the septum to run off the septum and into the vessel.
    Type: Application
    Filed: March 23, 2021
    Publication date: September 30, 2021
    Applicant: Gen-Probe Incorporated
    Inventors: David BUSE, Byron J. Knight
  • Patent number: 11118237
    Abstract: Disclosed are nucleic acid oligomers for amplifying one or more selected regions of HCV nucleic acid. Also disclosed are methods for specific amplification and characterization of HCV nucleic acid using the disclosed oligomers, as well as corresponding reaction mixtures and kits.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: September 14, 2021
    Assignee: GEN-PROBE INCORPORATED
    Inventors: Reinhold B. Pollner, Shyun-Shyun Lee
  • Patent number: 11120891
    Abstract: Disclosed are methods for detecting a minority genotype of a target nucleic acid. The disclosed method generally includes the steps of (a) deep sequencing at least a portion of the target nucleic acid; (b) using the deep sequencing results of (a) to detect the presence of variant nucleobases at one or more nucleotide reference positions within the target nucleic acid; (c) using the variant detection results generated in step (b) to perform a statistical analysis of whether the variants are significant; and (d) using the variant detection and variant significance results generated in steps (b) and (c) to perform a statistical analysis of whether a subset of sequences together exhibit a common set of significant variants.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: September 14, 2021
    Assignee: GEN-PROBE INCORPORATED
    Inventors: Somalee Datta, Brett Bowman, Xianqun Wang, Mingjie Wang
  • Patent number: 11111549
    Abstract: Disclosed are methods utilizing specific amplification of Candida sp. target nucleic acid for detecting the presence or absence of Candida sp. in a sample. Also disclosed are corresponding oligomers, including amplification oligomers, capture probes and detection probes, and combinations thereof, as well as corresponding reaction mixtures and kits.
    Type: Grant
    Filed: January 4, 2017
    Date of Patent: September 7, 2021
    Assignee: GEN-PROBE INCORPORATED
    Inventors: Angela S. Hudson, Damon K. Getman, Alice Jiang, Barbara L. Eaton
  • Patent number: 11104935
    Abstract: Kits for detecting analyte polynucleotides and an internal control in a sample. Included in the kit are an internal control polynucleotide and amplification reagents to co-amplify a first analyte polynucleotide and the internal control. Also included are first and second hybridization probes, each having a label indistinguishable from the other. The probes are respectively capable of hybridizing with a first analyte amplicon and an internal control amplicon. The first and second labels are indistinguishable homogeneous labels.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: August 31, 2021
    Assignee: GEN-PROBE INCORPORATED
    Inventors: Sunghae A. Joo, Janel M. Dockter
  • Patent number: 11104958
    Abstract: The present invention provides methods to detect prostate cancer by detecting the RNA encoded by PCA3. The disclosure provides a method for determining a predisposition, or presence of prostate cancer comprising: (a) contacting a sample with at least one oligonucleotide that hybridizes to a PCA3 polynucleotide; (b) detecting an amount of PCA3 and second prostate-specific polynucleotides; and (c) comparing the amount of PCA3 polynucleotide that hybridizes to the oligonucleotide to a predetermined cut off value, and determining the presence or absence of prostate cancer. Diagnostic kits are provided for detecting prostate cancer or the risk of developing same comprising: (a) at least one container means containing at least one oligonucleotide probe or primer that hybridizes to PCA3 (b) at least one oligonucleotide probe or primer that hybridizes with a second prostate specific nucleic acid; and (c) reagents for detecting PCA3 and the second prostate specific nucleic acid.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: August 31, 2021
    Assignee: GEN-PROBE INCORPORATED
    Inventors: Yves Fradet, Camille Chypre, Lyson Piche, Genevieve Garon
  • Patent number: 11098343
    Abstract: A processing module is configured to extend the capabilities of an analyzer configured to process substances within each of a plurality of receptacles. The module includes a container transport configured to transport a container from a location within the processing module to a location within the analyzer that is accessible to a substance transfer device of the analyzer. A receptacle distribution system is configured to receive a receptacle from the analyzer, transfer the receptacle into the processing module, and to move the receptacle between different locations within the analyzer. A substance transfer device of the module is configured to dispense substances into or remove substances from the receptacle within the processing module. A reagent card exchanger provides an input device for inserting reagent cards into and removing reagent cards from the module, stores reagent cards within the module, and transfers reagent cards to different location within the module.
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: August 24, 2021
    Assignee: GEN-PROBE INCORPORATED
    Inventors: David A. Buse, David Opalsky, Jason F. Rhubottom, Norbert D. Hagen, Jennifer L. Tidd
  • Patent number: 11090963
    Abstract: A printing module configured to print a label on a curved surface of an article includes an expandable printing mechanism configured to be expanded to an open configuration for receiving the article or contracted to a closed configuration placing the curved surface in an operative position with respect to a print head and an article moving assembly configured to grasp and hold the article and effect relative movement between the curved surface and the print head. The printing mechanism includes contact elements, such as rollers, that contact or otherwise engage the article when the printing mechanism is in the closed configuration and maintain the curved surface in the operative position with respect to the print head during relative movement between the curved surface and the print head.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: August 17, 2021
    Assignee: GEN-PROBE INCORPORATED
    Inventors: Rolf Silbert, Robert J. Rosati, David Buse, Olev Tammer, Matthias Merten
  • Patent number: RE48665
    Abstract: Method, composition, kit and system for isolating amplifiable nucleic acid from specimens preserved in a liquid-based cytology preservative that contains formaldehyde. The technique relies on the use of 2-imidazolidone and a protease enzyme, such as proteinase K, at elevated temperatures. Advantageously, RNA can be isolated and used as a template in nucleic acid amplification reactions.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: August 3, 2021
    Assignee: GEN-PROBE INCORPORATED
    Inventors: Deborah C. Jensen, Brett W. Kirkconnell, Timothy J. Wilson
  • Patent number: D927685
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: August 10, 2021
    Assignee: GEN-PROBE INCORPORATED
    Inventors: David A Buse, Byron J. Knight
  • Patent number: D928985
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: August 24, 2021
    Assignee: GEN-PROBE INCORPORATED
    Inventor: Rolf Silbert
  • Patent number: RE48732
    Abstract: Methods for selecting tag-oligonucleotide sequences for use in an in vitro nucleic acid assay. The selected tag sequences are useful for nucleic acid assay wherein interference between the nucleic acid sequences is the assay is to be controlled. Selected tag sequences are incorporated into nucleic acid assay to improve the performance of and/or minimize any interference between nucleic acids in the assay compared to untagged assays.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: September 14, 2021
    Assignee: GEN-PROBE INCORPORATED
    Inventors: Norman C. Nelson, Jijumon Chelliserry