Patents Assigned to Generate, Inc.
  • Patent number: 7261873
    Abstract: A process for obtaining energy values contained in a sulphur-containing carbonaceous fuel, the process comprising (a) treating a feed carbonaceous fuel having a first bound-sulphur content with an effective amount of an oxygen and SO2-containing gas in a reactor at an effective temperature to (i) provide elemental sulphur from the SO2, (ii) release exothermic heat, and (iii) produce a hot effluent gaseous steam containing the elemental sulphur and treated fuel having a second bound-sulphur content, (b) separating the elemental sulphur from the treated fuel; (c) collecting the elemental sulphur; (d) collecting the treated fuel; and (e) collecting the exothermic heat.
    Type: Grant
    Filed: October 9, 2003
    Date of Patent: August 28, 2007
    Assignee: Enflow Power Generation Inc.
    Inventors: Charles Q. Jia, Donald W. Kirk
  • Patent number: 7258530
    Abstract: An airfoil (44) formed of a plurality of pre-fired structural CMC panels (46, 48, 50, 52). Each panel is formed to have an open shape having opposed ends (54) that are free to move during the drying, curing and/or firing of the CMC material in order to minimize interlaminar stresses caused by anisotropic sintering shrinkage. The panels are at least partially pre-shrunk prior to being joined together to form the desired structure, such as an airfoil (42) for a gas turbine engine. The panels may be joined together using a backing member (30), using flanged ends (54) and a clamp (56), and/or with a bond material (36), for example.
    Type: Grant
    Filed: January 21, 2005
    Date of Patent: August 21, 2007
    Assignee: Siemens Power Generation, Inc.
    Inventors: Jay A. Morrison, Gary B. Merrill, Steven James Vance, Harry A. Albrecht, Yevgeniy Shteyman
  • Patent number: 7259552
    Abstract: A measurement device for measuring the wear of turbo-machine components to reduce the likelihood of component failure while a turbine-machine is at load. The measurement device is capable of measuring and calculating a distance between surfaces while the turbo-machine is at load. The distance may be compared with a measurement taken of the same location at another time to determine wear of a surface remote from the location of the measurement. The measurement device may be configured such that multiple measurements may be made on a single turbine engine by moving the measurement device from location to location.
    Type: Grant
    Filed: May 27, 2005
    Date of Patent: August 21, 2007
    Assignee: Siemens Power Generation, Inc.
    Inventor: Michael Twerdochlib
  • Patent number: 7255534
    Abstract: A turbine vane usable in a turbine engine and having at least one cooling system. The cooling system includes three diffusors in an outer wall of the vane for reducing the velocity of the cooling fluids exiting the turbine vane. One of the diffusors is formed from one or more cavities in an outer wall of the turbine vane for heat dissipation. The cavities may be supplied with cooling fluids from an internal cooling cavity through one or more interior metering orifices. The cooling fluids may exit the cooling cavity through one or more exterior metering orifices, which are second diffusors, and diffusion slots, which are third diffusors, that reduce the velocity of the cooling fluids and enable formation of a film cooling layer on the outer surface of the turbine vane.
    Type: Grant
    Filed: July 2, 2004
    Date of Patent: August 14, 2007
    Assignee: Siemens Power Generation, Inc.
    Inventor: George Liang
  • Patent number: 7250776
    Abstract: Aspects of the invention relate to a system for assessing the condition of a thermal barrier coating on a turbine vane during engine operation. According to embodiments of the invention, one or more wires can be passed along the airfoil portion of the vane. The wires can extend over, within, or beneath the thermal coating. An electrical current can be passed along the wires, and electrical resistance can be measured across the wires. Thus, if a portion of the thermal coating becomes damaged, then the wires located in that area may break. A disconnect in the wires can lead to an increase in resistance across the wires, which can alert an operator to a problem. Some assessment systems can provide a general indication of the magnitude of damage and whether the damage is spreading.
    Type: Grant
    Filed: September 7, 2006
    Date of Patent: July 31, 2007
    Assignee: Siemens Power Generation, Inc.
    Inventor: Michael Twerdochlib
  • Patent number: 7249461
    Abstract: A turbine fuel ring assembly includes a fuel distribution ring, at least one fuel supply tube attached to the fuel distribution ring and at least one attachment leg connected to the fuel distribution ring. The fuel ring has a hollow interior and a plurality of apertures for expelling a fluid. The attachment leg is configured to allow flexibility due to thermal expansion induced under certain load conditions such as during engine start-up or shut-down. Further, the configuration of the attachment legs provides improved stress distribution characteristics. The fuel supply tube includes a rectangular passage and a round passage that are disposed substantially transverse to each other and in fluid communication with each other and with the hollow interior of the fuel distribution ring. The rectangular passage and the round passage have substantially identical cross-sectional areas. The fuel supply tube is configured to avoid structural interferences with neighboring components.
    Type: Grant
    Filed: August 22, 2003
    Date of Patent: July 31, 2007
    Assignee: Siemens Power Generation, Inc.
    Inventor: Ricardo Ferreira Moraes
  • Patent number: 7246995
    Abstract: A seal usable to seal a transition in a can-annular combustion system of a turbine engine to a turbine vane assembly to direct exhaust gases through the turbine vane assembly. The seal may be formed from an elongated body extending along an outer edge of the transition and having first and second edges. The first edge of the seal may be attached to the transition, and the elongated body may extend away from the transition edge and contact a portion of the turbine vane assembly. The elongated body may flex during use without yielding or otherwise deforming.
    Type: Grant
    Filed: December 10, 2004
    Date of Patent: July 24, 2007
    Assignee: Siemens Power Generation, Inc.
    Inventor: James Michael Zborovsky
  • Patent number: 7247003
    Abstract: A stacked ceramic matrix composite lamellate assembly (10) including shear force bearing structures (48) for resisting relative sliding movement between adjacent lamellae. The shear force bearing structures may take the form of a cross-lamellar stitch (50), a shear pin (62), a warp (90) in the lamellae, a tongue (104) and groove (98) structure, or an inter-lamellar sealing member (112), in various embodiments. Each shear force bearing structure secures a subset of the lamellae, with at least one lamella being common between adjacent subsets in order to secure the entire assembly.
    Type: Grant
    Filed: January 7, 2005
    Date of Patent: July 24, 2007
    Assignee: Siemens Power Generation, Inc.
    Inventors: Michael A. Burke, Jay A. Morrison, Steven James Vance, Daniel G. Thompson, Vijay Parthasarathy, Gary B. Merrill, Douglas Allen Keller
  • Patent number: 7247002
    Abstract: A component (10) for a gas turbine engine formed of a stacked plurality of ceramic matrix composite (CMC) lamellae (12) supported by a metal support structure (20). Individual lamellae are supported directly by the support structure via cooperating interlock features (30, 32) formed on the lamella and on the support structure respectively. Mating load-transferring surfaces (34, 36) of the interlock features are disposed in a plane (44) oblique to local axes of thermal growth (38, 40) in order to accommodate differential thermal expansion there between with delta alpha zero expansion (DAZE). Reinforcing fibers (62) within the CMC material may be oriented in a direction optimized to resist forces being transferred through the interlock features. Individual lamellae may all have the same structure or different interlock feature shapes and/or locations may be used in different groups of the lamellae. Applications for this invention include an airfoil assembly (10) and a ring segment assembly (82).
    Type: Grant
    Filed: June 29, 2005
    Date of Patent: July 24, 2007
    Assignee: Siemens Power Generation, Inc.
    Inventors: Harry A. Albrecht, Yevgeniy Shteyman, Jay A. Morrison, Daniel G. Thompson
  • Patent number: 7247966
    Abstract: A generator includes a shaft and rotor body defining poles and a winding positioned around the shaft on the rotor body. A rotor pole crossover is aligned to the shaft and connects ends of the winding between adjacent poles. The rotor pole crossover includes a body member having a curved medial section and opposing legs extending outwardly from the curved medial section that connect to the ends of the winding. The curved medial section has at least one slot formed therein to add flexibility to the rotor pole crossover.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: July 24, 2007
    Assignee: Siemens Power Generation, Inc.
    Inventors: David Shore, Phillip Keaton
  • Patent number: 7246480
    Abstract: A heating system for a turbine engine air intake region for preventing the formation of ice on the air intake region, which may be formed from the bell-mouth, one or more vanes, such as inlet guide vanes, a turbine blade assembly formed from one or more blades, such as the first row of rotating blades, and related components. A heat source may be attached to the inlet manifold and positioned to emit thermal radiation toward the air intake region to prevent the formation of ice thereon.
    Type: Grant
    Filed: November 4, 2004
    Date of Patent: July 24, 2007
    Assignee: Siemens Power Generation, Inc.
    Inventor: Paul David Ritland
  • Patent number: 7247959
    Abstract: A dynamoelectric machine 30 includes a rotor 32 and a stator 34 surrounding the rotor. The dynamoelectric machine 30 further includes a generator housing 36 surrounding both the rotor 32 and the stator 34. Additionally, the dynamoelectric machine 30 includes at least one blower 39a, 39b for generating a cooling gas flow 38 within the generator housing 36 to cool the stator 34 and the rotor 32. The dynamoelectric machine 30 includes at least one arcuate heat exchanger 40a, 40b, 80a, 80b within the generator housing 36 for extracting heat from the cooling gas flow 38.
    Type: Grant
    Filed: October 11, 2002
    Date of Patent: July 24, 2007
    Assignee: Siemens Power Generation, Inc.
    Inventors: King Wai Chan, Homer Gay Hargrove
  • Patent number: 7243496
    Abstract: A method of operating a combustor (10), to provide intimately mixed hot combusted gas (44) for a gas turbine (46), includes feeding gaseous oxidant (12) and gaseous fuel (16) into the combustor (10) near a combustion flame (28) which has a tip end (39) and a root end (29), where corona discharge occurs through adjustment of an electric field (34), and where the corona discharge causes ionized particles (36) to form and also causes intimate turbulent mixing of the gases.
    Type: Grant
    Filed: January 29, 2004
    Date of Patent: July 17, 2007
    Assignee: Siemens Power Generation, Inc.
    Inventors: Dennis Pavlik, David Walter Branston, Guenter Lins, Thomas Hammer
  • Patent number: 7245030
    Abstract: An electrical power generating apparatus (20) may include a housing (22), an electrical generator (24) within the housing, and a step-up transformer (30) within the housing and connected to the electrical generator. A turbine (26) may be provided exterior the housing (22) to drive the electrical generator (24). A barrier wall (38) may be provided within the housing and (22) between the electrical generator (24) and the step-up transformer (30), and a fire extinguishing system (40) may be installed within the housing (22). The step-up transformer (30) may be connected to the electrical generator (24) without use of an isolated phase bus.
    Type: Grant
    Filed: December 11, 2003
    Date of Patent: July 17, 2007
    Assignee: Siemens Power Generation, Inc.
    Inventors: Robert J. Nelson, Stephen W. Cates
  • Patent number: 7243042
    Abstract: The claimed invention is a method for determining a relationship between a metal temperature of a turbine component and an operating condition of a turbine housing the component. The claimed invention is also a method for determining consumed operating life for a turbine component. The invention further comprises a system for determining an amount of remaining useful life in a turbine component. The invention further comprises a method for determining a relationship between a stress state of a turbine component and an operating condition of a turbine housing the component.
    Type: Grant
    Filed: November 30, 2004
    Date of Patent: July 10, 2007
    Assignee: Siemens Power Generation, Inc.
    Inventors: Kurt Augustus Plotts, Fredrick Michael Davis, Christina Leanne Peronto
  • Patent number: 7238404
    Abstract: The present invention provides for thin sheet wedges that comprise a mica matrix impregnated with a conductive resin. The mica matrix is composed of mica flakes. The thin sheet wedge has a semi-conductive property of 500–500,000 ohms per square. In one embodiment the thin sheet wedge further comprises at least one glass fiber layer. In a particular embodiment the glass fiber layer is a backing for the mica matrix. In another particular embodiment the glass fiber is interwoven with the mica matrix. The glass fiber layer may itself be impregnated with a conductive resin.
    Type: Grant
    Filed: March 10, 2004
    Date of Patent: July 3, 2007
    Assignee: Siemens Power Generation, Inc.
    Inventors: James Frederick Lau, Douglas James Conley
  • Patent number: 7237389
    Abstract: Aspects of the invention relate to a system for attaching a ceramic liner to a non-ceramic combustor head-end component while accommodating different rates of thermal expansion of these components. One end of the liner can be received within a slot formed by the combustor head-end component. The liner can be held in place by a plurality of pins with each pin passing through a pair of aligned openings in the liner and the head-end component. The end of the liner can be spaced from each of the walls of the slot so as to form a series of gaps in fluid communication. The gaps and the pins can accommodate differential thermal expansion between the liner and combustor head-end component. If desired, at least some of the gaps can be tightly controlled so as to regulate air leakage around the end of the liner.
    Type: Grant
    Filed: November 18, 2004
    Date of Patent: July 3, 2007
    Assignee: Siemens Power Generation, Inc.
    Inventors: William R. Ryan, Robert J. Bland
  • Patent number: 7239149
    Abstract: A mount is for installing a probe, such as for example, a search coil, in a variety of locations and orientations within an electrical generator, without requiring the rotor of the generator to be removed. The mount includes a block having a longitudinal hole and a plurality of transverse slots intersecting the hole. A plurality of wedges are disposed within the slots. A wedge pin inserted into the longitudinal hole engages the wedges forcing the wedges outward in order to secure the mount and search coil thereon in the desired position within the generator, such as for example, in the air gap between the rotor and stator. A fastening mechanism further secures the mount in place.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: July 3, 2007
    Assignee: Siemens Power Generation, Inc.
    Inventors: George F. Dailey, Michael O'Leary
  • Patent number: 7234918
    Abstract: Embodiments of the invention relate to a system and method for controlling the size of gaps in a turbine engine. In many instances, it is desirable to minimize the size of the gaps between neighboring rotating and stationary components in a turbine engine, such as between a disc cover plate and a proximate pre-swirler. According to embodiments of the invention, each component can be provided with a sealing surface. The sealing surfaces can be angled relative to the axis of rotation. The sealing surfaces are spaced from each other so as to form a gap therebetween. The sealing surfaces may or may not be substantially parallel. As a result of such configuration, the size of the gap can be controlled by axial and radial movement of the components. For example, the gap between the cover plate and the pre-swirler can be adjusted by axially movement of the rotor.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: June 26, 2007
    Assignee: Siemens Power Generation, Inc.
    Inventors: Dieter Brillert, Wayne Giddens, Harald Hoell, Robert W. Sunshine, Juergen Hermeler, Hans-Thomas Bolms
  • Patent number: 7231817
    Abstract: An inspection system formed at least from a viewing tube for inspecting aspects of a turbine engine during operation of the turbine engine. An outer housing of the viewing tube may be positioned within a turbine engine using at least one bearing configured to fit into an indentation of a support housing to form a ball and socket joint enabling the viewing tube to move during operation as a result of vibrations and other movements. The viewing tube may also include one or more lenses positioned within the viewing tube for viewing the turbine components. The lenses may be kept free of contamination by maintaining a higher pressure in the viewing tube than a pressure outside of the viewing tube and enabling gases to pass through an aperture in a cap at a viewing end of the viewing tube.
    Type: Grant
    Filed: January 18, 2005
    Date of Patent: June 19, 2007
    Assignee: Siemens Power Generation, Inc.
    Inventors: Jan P. Smed, Dennis H. Lemieux, James P. Williams